Answer on Question \#47855, Physics, Computational Physics

A truck moving at $5 \mathrm{~m} / \mathrm{s}$ is about to accelerate at the rate of $2 \mathrm{~m} / \mathrm{s}$ in 3 s . After 3 s the driver saw an old lady about to cross the road and it took 0.8 sec before it hits the brake. If the maximum braking deceleration is $5 \mathrm{~m} / \mathrm{s}^{2}$ and its distance of the truck to the old lady is 50 m . Does the old lady hit by the truck?

Solution:

Given:

$$
\begin{aligned}
& v_{1}=5 \mathrm{~m} / \mathrm{s} \\
& a_{1}=2 \mathrm{~m} / \mathrm{s}^{2} \\
& t_{1}=3 \mathrm{~s} \\
& t_{2}=0.8 \mathrm{~s} \\
& a_{2}=-5 \mathrm{~m} / \mathrm{s}^{2}, \\
& D=50 \mathrm{~m}
\end{aligned}
$$

The kinematic equation that describes an object's motion is:

$$
v_{2}=v_{1}+a_{1} t=5+2 \cdot 3=11 \mathrm{~m} / \mathrm{s}
$$

The distance covered before driver hits the brake

$$
d_{1}=v_{2} t_{2}=11 \cdot 0.8=8.8 \mathrm{~m}
$$

The kinematic equation that describes braking deceleration:

$$
d_{2}=\frac{v_{f}^{2}-v_{2}^{2}}{2 a_{2}}=\frac{0-11^{2}}{-2 \cdot 5}=12.1 \mathrm{~m}
$$

Thus, before stop truck covered distance

$$
\begin{gathered}
d=d_{1}+d_{2}=8.8+12.1=20.9 \mathrm{~m} \\
d<50 \mathrm{~m}
\end{gathered}
$$

Answer: Truck does not hit the old lady.

