Answer on Question \#47771, Physics, Computational Physics

A mass m of 400 g hangs from the rim of a wheel of radius $=15 \mathrm{~cm}$ when released from rest the mass falls 2 m in 6.5 sec . Find the moment of inertia of the wheel.

Solution:

In 6.5 seconds, potential energy loss is

$$
P E=m g h=0.4 \mathrm{~kg} * 2.0 \mathrm{~m} * 9.81 \mathrm{~m} / \mathrm{s}^{2}=7.848 \mathrm{~J}
$$

Final velocity of mass (twice the average velocity):

$$
v_{f}=2 * \frac{2 \mathrm{~m}}{6.5 \mathrm{~s}}=0.6154 \mathrm{~m} / \mathrm{s}
$$

Final angular velocity of wheel:

$$
\begin{gathered}
\omega_{f}=\frac{v_{f}}{R}=\frac{0.6154}{0.15}=4.10 \mathrm{rad} / \mathrm{s} \\
\text { K.E.gain }=\text { P.E.loss } \\
\frac{m v_{f}^{2}}{2}+\frac{I \omega_{f}^{2}}{2}=P E
\end{gathered}
$$

Solve for moment of inertia, I.

$$
\begin{gathered}
I=\frac{2 P E-m v_{f}^{2}}{\omega_{f}^{2}} \\
I=\frac{2 * 7.848-0.4 * 0.6154^{2}}{4.10^{2}}=0.925 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{gathered}
$$

Answer: $\quad I=0.925 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.

