Answer on Question \#47614-Physics-Computational Physics

A spacecraft orbiting a planet goes out of control and starts falling towards a planet. The spacecraft falls $h_{1}=1200$ meters in the first $t_{1}=10$ seconds after which the retro-rocket fires and the craft starts to accelerate upwards at $a_{2}=0.5 \mathrm{~g} 9\left(1 \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$
a. How long after the rocket fires does the craft stop falling?
b. How much further does the craft fall before stopping?
c. How many seconds after the rocket fires does the craft reach its original point?

Solution

a. The spacecraft falls $h_{1}=1200$ meters in the first $t_{1}=10$ seconds:

$$
h_{1}=\frac{a_{1} t_{1}^{2}}{2} \rightarrow a_{1}=\frac{2 h_{1}}{t_{1}^{2}}
$$

The speed of spacecraft when the retro-rocket fires and the craft starts to accelerate upwards is

$$
v_{1}=a_{1} t_{1}=\frac{2 h_{1}}{t_{1}^{2}} t_{1}=\frac{2 h_{1}}{t_{1}}
$$

The speed of spacecraft when it stoped

$$
v_{2}=0=v_{1}-a_{2} t_{2}=\frac{2 h_{1}}{t_{1}}-a_{2} t_{2} \rightarrow t_{2}=\frac{2 h_{1}}{t_{1} a_{2}}=\frac{2 \cdot 1200}{10 \cdot 0.5 \cdot 9.81}=48.9 \mathrm{~s} .
$$

b.

$$
h_{2}=v_{1} t_{2}-\frac{a_{2} t_{2}^{2}}{2}=\frac{2 h_{1}}{t_{1}} t_{2}-\frac{a_{2} t_{2}^{2}}{2}=\frac{2 \cdot 1200}{10} 48.9-\frac{0.5 \cdot 9.81 \cdot 48.9^{2}}{2}=5872 \mathrm{~m} .
$$

c.

$$
h_{1}+h_{2}=\frac{a_{2} t_{3}^{2}}{2} \rightarrow t_{3}=\sqrt{\frac{2\left(h_{1}+h_{2}\right)}{a_{2}}} .
$$

The time when the craft reach its original point after the rocket fires is

$$
t_{2}+t_{3}=t_{2}+\sqrt{\frac{2\left(h_{1}+h_{2}\right)}{a_{2}}}=48.9+\sqrt{\frac{2(1200+5872)}{0.5 \cdot 9.81}}=102.6 \mathrm{~s} .
$$

Answer: a. $8.9 \mathrm{~s} ; \mathrm{b} .5872 \mathrm{~m} ; \mathbf{c} \mathbf{1 0 2 . 6 s}$.

