PREDEFINED PACKAGES

Predefined packages are those which are developed by SUN micro systems and supplied as a
part of JDK (Java Development Kit) to simplify the task of java programmer.

NOTE:

Core packages of java starts with java. (For example: java.lang.*) and Advanced packages of java
starts with javax. (For example: java.sql.*)

TYPES of predefined packages:

As a part of J2SE we have nine predefined packages which are given in the following table:

java.lang.*

This package is used for achieving the language functionalities such as convertion of data from
string to fundamental data, displaying the result on to the console, obtaining the garbage
collector. This is the package which is by default imported for each and every java program.

java.io.*
This package is used for developing file handling applications, such as, openingthe file in read or
write mode, reading or writing the data, etc.

java.awt.*(abstract windowing toolkit)
This package is used for developing GUI (Graphic Unit Interface) components such as buttons,
check boxes, scroll boxes, etc.

java.awt.event.*

Event is the sub package of awt package. This package is used for providing the functionality to
GUI components, such as, when button is clicked or when check box is checked, when scroll box
is adjusted either vertically or horizontally.

java.applet.*

This package is used for developing browser oriented applications. In other words this package
is used for developing distributed programs. An applet is a java program which runs in the
context of www or browser.

java.net.*
This package is used for developing client server applications.

java.util.*

This package is used for developing quality or reliable applications in java or J2EE. This package
contains various classes and interfaces which improves the performance of J2ME applications.
This package is also known as collection framework (collection framework is the standardized
mechanism of grouping of similar or different type of objects into single object. This single
object is known as collection object).

java.text.*
This package is used for formatting date and time on day to day business operations.

java.lang.reflect.*

Reflect is the sub package of lang package. This package is basically used to study runtime
information about the class or interface. Runtime information represents data members of the
class or interface, Constructors of the class, types of methods of the class or interface.

java.sql.*
This package is used for retrieving the data from data base and performing various operations
on data base.

http://corejava1.blogspot.com/2011/07/predefined-packages.html

The java.io Package

The java.io package contains a relatively large number of classes, but, as you can see
from Figure 11-1 and Figure 11-2, the classes form a fairly structured hierarchy. Most of the
package consists of byte streams--subclasses of 1nputstream Or outputstream and (in Java 1.1)
character streams--subclasses of reader OF writer. Each of these stream types has a specific
purpose, and, despite its size, java.io IS a straightforward package to understand and to use.

Before we consider the stream classes in the package, let's examine the important non-stream
classes. ri1e represents a file or directory name in a system-independent way and provides
methods for listing directories, querying file attributes, and renaming and deleting
files. rilenamerilter IS an interface that defines a method that accepts or rejects specified
filenames. It is used by java.awt.rilepialog and rile to specify what types of files should be
included in directory listings. randomaccessrile allows you to read from or write to arbitrary
locations of a file. Often, though, you'll prefer sequential access to a file and should use one of
the stream classes.

InputStream aNd outputstream are abstract classes that define methods for reading and writing
bytes. Their subclasses allow bytes to be read from and written to a variety of sources and
SinksS. FileInputstream and FileoutputStream read from and write to
files. BytearrayInputstream anNd Bytearrayoutputstream read from and write to an array of
bytes in MEMOrY. pipedInputstream feads bytes from a PipedOutputStream,
and pipedoutputstream WriteS bytes t0 a pipedinputstream. These classes work together to
implement a pipe for communication between threads.

FilterInputStream aNd Filteroutputstream are Special; they filter input and output bytes.
When you create a rilterInputStream, YOU SPeCify an rnputstream for it to filter. When you
call the reaa () method of a FilterInputStream, it calls the reaa () method of its InputStream,
processes the bytes it reads, and returns the filtered bytes. Similarly, when you create
a FilteroOutputStream, YOU SPeCify an outputstream to be filtered. Calling the write () method
of a Filteroutputstreanm Causes it to process your bytes in some way and then pass those
filtered bytes to the write () method of itS outputstreamn.

http://docstore.mik.ua/orelly/java-ent/jnut/ch11_01.htm#javanut3-java.io-1
http://docstore.mik.ua/orelly/java-ent/jnut/ch11_01.htm#javanut3-java.io-2

| BytedrraylnputSirean |

| FilelnputStroam
cam] Fiteriaputsiveom |
{ormne],

| ByterrayOutputStreom | g e ro—

—|Ilunuw5|m-1 | : :
—| FilterDutput Stream | .

{
%
|
]
T
f
t
:

 FitorReador fr-—{ PushbackReader

|
StreomTokenizer l
|

H chartrrayheader | —{ Butferoitiee |
] PipodRoader I | CherkrrmyWrter |

] swingReader | — Faeriter |

Writer

FilePermission

le“ I . hmmm f (Hmmﬁ .) Comtrant Rt et st e et et s e n
extansh =em e implements

Figure 11-1. The java.io package

i perrr—

l —| InvalidObjoctExcoption |
—| EOFExcoption | _I — | ;
iweExcoplion
—| FileNotFoundExesption | —| o —— |
| Exceplion I—-—l |DException I——l IntarroptedIOE xcopfion | _I OptionalDutaException |
 ObjecSireanException —
= } —Ihrm‘-’.-rmﬂdlnuﬁim |
— Sywalodexception |
—| WriteAbortodExcoption |
UmsuppertedEncodingExcepfion
1 |
—| UTFDutaFormatException |

Figure 11-2. The exception classes of the java.io package

FilterInputStream aNd Filteroutputstream O NOt perform any filtering themselves; this is
done by their subclasses. sutferedinputstream aNdBufferedoutputstream Provide input and
output buffering and can increase 1/O efficiency. patainputstream reads raw bytes from a
stream and interprets them in various binary formats. It has various methods to read primitive
Java data types in their standard binary formats. pataoutputstream allows you to write Java
primitive data types in binary format.

In Java 1.1 and later, the byte streams | just described are complemented by an analogous set
of character input and output streams. reader IS the superclass of all character input streams,
and writer IS the superclass of all character output streams. These character streams supersede
the byte streams for all textual 1/O. They are more efficient than the byte streams, and they
correctly handle the conversion between local encodings and Unicode text, making them
invaluable for internationalized programs. Most of thereader and writer Streams have
obvious byte-stream analogs. sufferedreader IS @ commonly used stream; it provides
buffering for efficiency and also has a readnine ()method to read a line of text at a
time. printwriter IS another very common stream; its methods allow output of a textual
representation of any primitive Java type or of any object (via the
object's tostring () method).

The objectInputstream and objectoutputstream Classes are special. These byte-stream classes
are new as of Java 1.1 and are part of the Object Serialization API.

CharConversionException Java l.l

java.io serializable checked PJ1.1

Signals an error when converting bytes to characters or vice versa.

public class CharConversionException extends IOException {
/I Public Constructors

public CharConversionException ();

public CharConversionException (String s);

¥

F“erarChy:Object——>Throwable(Serializable)——>Exception——>IOException——
>CharConversionException

EOFEXxception Java 1.0

java.io serializable checked PJ1.1

An 1oException that signals the end-of-file.

public class EOFException extends IOException {
/I Public Constructors

public EOFException ();

public EOFException (String s);

¥

FuerarChy:Object——>Throwable(Serializable)——>Exception——>IOException——>EOFException

FileNotFoundException Java 1.0

java.io serializable checked PJ1.1(opt)

An 1oException that signals that a specified file cannot be found.

public class FileNotFoundException extends IOException {
/I Public Constructors

public FileNotFoundException ();

public FileNotFoundException (String s);

}

F”erarChy:Object——>Throwable(Serializable)——>Exception——>IOException——
>FileNotFoundException

ThrOVVH|3y:FileInputStream.FileInputStream(), FileOutputStream.FileOutputStream(),
FileReader.FileReader (), RandomAccessFile.RandomAccessFile ()

InterruptedlOException Java 1.0

java.io serializable checked PJ1.1

An 1oException that signals that an input or output operation was interrupted.
The bytesTransterred field contains the number of bytes read or written before the operation
was interrupted.

public class InterruptedlOException extends IOException {
/I Public Constructors

public Interruptedl OException ();

public Interruptedl OException (String s);

/I Public Instance Fields
public int bytesTransferred ;

¥

F”erarChy:Object——>Throwable(Serializable)——>Exception——>IOException——
>InterruptedIOException

InvalidClassException Javal.l

java.io serializable checked PJ1.1

Signals that the serialization mechanism has encountered one of several possible problems
with the class of an object that is being serialized or deserialized. The c1assnamefield should
contain the name of the class in question, and the getmMessage () method is overridden to return
this class name with the message.

public class InvalidClassException extends ObjectStreamException {
/l Public Constructors
public InvalidClassException (String reason);
public InvalidClassException (String cname, String reason);
I/l Public Methods Overriding Throwable
public String getMessage ();
// Public Instance Fields
public String classname ;

ks

F”erarChy:Object——>Throwable(Serializable)——>Exception——>IOException——
>0bjectStreamException-->InvalidClassException

