

Answer on Question #42187, Programming, C# | for confirmation

When should we use static keyword in C# and in which scenarios we use non-static properties, functions and classes?

Static Demystified

Let's start with the memory first. Whenever a process is loaded in the RAM, we can say that the

memory is roughly divided into three areas (within that process): Stack, Heap, and Static (which,

in .NET, is actually a special area inside Heap only known as High Frequency Heap).

The static part holds the “static” member variables and methods. What exactly is static? Those

methods and variables which don't need an instance of a class to be created are defined as being

static. In C# (and Java too), we use the static keyword to label such members as static. For e.g.:

class MyClass

{

 public static int a;

 public static void DoSomething();

}

These member variables and methods can be called without creating an instance of the enclosing

class. E.g., we can call the static method DoSomething() as:

MyClass.DoSomething();

We don't need to create an instance to use this static method.

 m.DoSomething(); //wrong code. will result in compilation error.

An important point to note is that the static methods inside a class can only use static member

variables of that class. Let me explain why:

Suppose you have a private variable in MyClass which is not static:

class MyClass

{

 // non-static instance member variable

 private int a;

 //static member variable

 private static int b;

 //static method

 public static void DoSomething()

 {

 //this will result in compilation error as “a” has no memory

 a = a + 1;

 //this works fine since “b” is static

 b = b + 1;

 }

}

Now, we will call the DoSomething method as:

MyClass.DoSomething();

Note that we have not created any instance of the class, so the private variable "a" has no memory

as when we call a static method for a class, only the static variables are present in the memory (in

the Static part). Instance variables, such as “a” in the above example, will only be created when we

create an instance of the class using the “new” keyword, as:

MyClass m = new MyClass(); //now “a” will get some memory

But since we haven’t created an instance yet, the variable “a” is not there in the process memory.

Only “b” and “DoSomething()” are loaded. So when we call DoSomething(), it will try to

increment the instance variable “a” by 1, but since the variable isn’t created, it results in an error.

The compiler flags an error if we try to use instance variables in static methods.

Now, what is a static class? When we use the static keyword before a class name, we specify that

the class will only have static member variables and methods. Such classes cannot be instantiated as

they don’t need to: they cannot have instance variables. Also, an important point to note is that such

static classes are sealed by default, which means they cannot be inherited further.

This is because static classes have no behavior at all. There is no need to derive another class from a

static class (we can create another static class).

Why do we need static classes? As already written above, we need static classes when we know that

our class will not have any behavior as such. Suppose we have a set of helper or utility methods

which we would like to wrap together in a class. Since these methods are generic in nature, we can

define them all inside a static class. Remember that helper or utility methods need to be called many

times, and since they are generic in nature, there is no need to create instances. E.g., suppose that

you need a method that parses an int to a string. This method would come in the category of a

utility or helper method.

So using the static keyword will make your code a bit faster since no object creation is involved.

An important point to note is that a static class in C# is different from one in Java. In Java, the

static modifier is used to make a member class a nested top level class inside a package. So using

the static keyword with a class is different from using it with member variables or methods in

Java (static member variables and methods are similar to the ones explained above in C#).

Also, the static keyword in C++ is used to specify that variables will be in memory till the time

the program ends; and initialized only once. Just like C# and Java, these variables don’t need an

object to be declared to use them. Please see this link for the use of the static keyword in C++:

Writing about the const keyword brings me to a subtle but important distinction between const

and readonly keywords in C#: const variables are implicitly static and they need to be defined

when declared. readonly variables are not implicitly static and can only be initialized once.

E.g.: You are writing a car racing program in which the racing track has a fixed length of 100 Km.

You can define a const variable to denote this as:

private const int trackLength = 100;

Now, you want the user to enter the number of cars to race with. Since this number would vary

from user to user, but would be constant throughout a game, you need to make it readonly. You

cannot make it a const as you need to initialize it at runtime. The code would be like:

public class CarRace

{

 //this is compile time constant

 private const int _trackLength = 100;

 //this value would be determined at runtime, but will

 //not change after that till the class's

 //instance is removed from memory

 private readonly int _noOfCars;

 public CarRace(int noOfCars)

 {}

 public CarRace(int noOfCars)

 {

 ///<REMARKS>

 ///Get the number of cars from the value

 ///use has entered passed in this constructor

 ///</REMARKS>

 _noOfCars = noOfCars;

 }

}

Summary

We examined the static keyword in C#, and saw how it helps in writing good code. It is best to

think and foresee possible uses of the static keyword so that the code efficiency, in general,

increases.

 http://www.AssignmentExpert.com/

