
Answer on Question#41052- Programming, C#

1. Reuse the functions of the book Tickets class in a new class, named book Ticket, to add the feature of e-

ticket booking create a c# programming

Solution.

Object-Oriented Programming (C#)

All managed languages in the .NET Framework, such as Visual Basic and C#, provide full support for object-

oriented programming including encapsulation, inheritance, and polymorphism.

Encapsulation means that a group of related properties, methods, and other members are treated as a single unit or

object.

Inheritance describes the ability to create new classes based on an existing class.

Polymorphism means that you can have multiple classes that can be used interchangeably, even though each class

implements the same properties or methods in different ways.

This section describes the following concepts:

Classes and Objects

The terms class and object are sometimes used interchangeably, but in fact, classes describe the type of

objects, while objects are usableinstances of classes. So, the act of creating an object is called instantiation. Using

the blueprint analogy, a class is a blueprint, and an object is a building made from that blueprint.

To define a class:

class SampleClass

{

}

Both Visual Basic and C# also provide a light version of classes called structures that are useful when you

need to create large array of objects and do not want to consume too much memory for that.

To define a structure:

struct SampleStruct

{

}

Class Members
Each class can have different class members that include properties that describe class data, methods that

define class behavior, and events that provide communication between different classes and objects.

Properties and Fields

Fields and properties represent information that an object contains. Fields are like variables because they

can be read or set directly.

To define a field:

Class SampleClass

javascript:void(0)

{

 public string sampleField;

}

Properties have get and set procedures, which provide more control on how values are set or returned.

Both C# and Visual Basic allow you either to create a private field for storing the property value or use so-called

auto-implemented properties that create this field automatically behind the scenes and provide the basic logic for

the property procedures.

To define an auto-implemented property:

class SampleClass

{

 public int SampleProperty { get; set; }

}

If you need to perform some additional operations for reading and writing the property value, define a field

for storing the property value and provide the basic logic for storing and retrieving it:

class SampleClass

{

 private int _sample;

 public int Sample

 {

 // Return the value stored in a field.

 get { return _sample; }

 // Store the value in the field.

 set { _sample = value; }

 }

}

Most properties have methods or procedures to both set and get the property value. However, you can

create read-only or write-only properties to restrict them from being modified or read. In Visual Basic you can

use ReadOnly and WriteOnly keywords. In C#, you can omit the get or set property method. However, in both

Visual Basic and C#, auto-implemented properties cannot be read-only or write-only.

Methods

A method is an action that an object can perform.

To define a method of a class:

class SampleClass

{

 public int sampleMethod(string sampleParam)

 {

 // Insert code here

 }

}

A class can have several implementations, or overloads, of the same method that differ in the number of

parameters or parameter types.

To overload a method:

public int sampleMethod(string sampleParam) {};

public int sampleMethod(int sampleParam) {}

In most cases you declare a method within a class definition. However, both Visual Basic and C# also

support extension methods that allow you to add methods to an existing class outside the actual definition of the

class.

Constructors

Constructors are class methods that are executed automatically when an object of a given type is

created. Constructors usually initialize the data members of the new object. A constructor can run only once when a

class is created. Furthermore, the code in the constructor always runs before any other code in a class. However,

you can create multiple constructor overloads in the same way as for any other method.

To define a constructor for a class:

public class SampleClass

{

 public SampleClass()

 {

 // Add code here

 }

}

Destructors

Destructors are used to destruct instances of classes. In the .NET Framework, the garbage collector

automatically manages the allocation and release of memory for the managed objects in your application. However,

you may still need destructors to clean up any unmanaged resources that your application creates. There can be

only one destructor for a class.

For more information about destructors and garbage collection in the .NET Framework, see Garbage Collection.

Events

Events enable a class or object to notify other classes or objects when something of interest occurs. The class

that sends (or raises) the event is called the publisher and the classes that receive (or handle) the event are

called subscribers. For more information about events, how they are raised and handled, see

Nested Classes

A class defined within another class is called nested. By default, the nested class is private.

class Container

{

 class Nested

 {

 // Add code here.

 }

}

To create an instance of the nested class, use the name of the container class followed by the dot and then

followed by the name of the nested class:

Container.Nested nestedInstance = new Container.Nested()

Access Modifiers and Access Levels
All classes and class members can specify what access level they provide to other classes by using access

modifiers.

The following access modifiers are available:

C# Modifier Definition

http://msdn.microsoft.com/ru-ru/library/0xy59wtx.aspx

public The type or member can be accessed by any other code in the same

assembly or another assembly that references it.

private The type or member can only be accessed by code in the same class.

protected The type or member can only be accessed by code in the same class or in a

derived class.

internal The type or member can be accessed by any code in the same assembly, but

not from another assembly.

protected

internal

The type or member can be accessed by any code in the same assembly, or

by any derived class in another assembly.

Instantiating Classes
To create an object, you need to instantiate a class, or create a class instance.

SampleClass sampleObject = new SampleClass();

After instantiating a class, you can assign values to the instance's properties and fields and invoke class methods.

// Set a property value.

sampleObject.sampleProperty = "Sample String";

// Call a method.

sampleObject.sampleMethod();

To assign values to properties during the class instantiation process, use object initializers:

// Set a property value.

SampleClass sampleObject = new SampleClass

 { FirstProperty = "A", SecondProperty = "B" };

Static (Shared) Classes and Members
A static (shared in Visual Basic) member of the class is a property, procedure, or field that is shared by all

instances of a class.

To define a static (shared) member:

static class SampleClass

{

 public static string SampleString = "Sample String";

}

To access the static (shared) member, use the name of the class without creating an object of this class:

Console.WriteLine(SampleClass.SampleString);

Static (shared) classes in C# and modules in Visual Basic have static (shared) members only and cannot be

instantiated. Static (shared) members also cannot access non-static (non-shared) properties, fields or methods

Anonymous Types
Anonymous types enable you to create objects without writing a class definition for the data type. Instead,

the compiler generates a class for you. The class has no usable name and contains the properties you specify in

declaring the object.

http://msdn.microsoft.com/ru-ru/library/yzh058ae.aspx
http://msdn.microsoft.com/ru-ru/library/st6sy9xe.aspx
http://msdn.microsoft.com/ru-ru/library/bcd5672a.aspx
http://msdn.microsoft.com/ru-ru/library/7c5ka91b.aspx

To create an instance of an anonymous type:

// sampleObject is an instance of a simple anonymous type.

var sampleObject =

 new { FirstProperty = "A", SecondProperty = "B" };

Inheritance

Inheritance enables you to create a new class that reuses, extends, and modifies the behavior that is defined

in another class. The class whose members are inherited is called the base class, and the class that inherits those

members is called the derived class. However, all classes in both C# and Visual Basic implicitly inherit from

the Object class that supports .NET class hierarchy and provides low-level services to all classes.

class DerivedClass:BaseClass{}

By default all classes can be inherited. However, you can specify whether a class must not be used as a base class,

or create a class that can be used as a base class only.

To specify that a class cannot be used as a base class:

public sealed class A { }

To specify that a class can be used as a base class only and cannot be instantiated:

public abstract class B { }

Overriding Members
By default, a derived class inherits all members from its base class. If you want to change the behavior of

the inherited member, you need to override it. That is, you can define a new implementation of the method,

property or event in the derived class.

The following modifiers are used to control how properties and methods are overridden:

C# Modifier Definition

virtual (C# Reference) Allows a class member to be overridden in a derived

class.

override (C# Reference) Overrides a virtual (overridable) member defined in the

base class.

Not supported Prevents a member from being overridden in an

inheriting class.

abstract (C# Reference) Requires that a class member to be overridden in the

derived class.

new Modifier (C#

Reference)

Hides a member inherited from a base class

Interfaces

javascript:void(0)
http://msdn.microsoft.com/ru-ru/library/system.object.aspx
http://msdn.microsoft.com/ru-ru/library/9fkccyh4.aspx
http://msdn.microsoft.com/ru-ru/library/ebca9ah3.aspx
http://msdn.microsoft.com/ru-ru/library/sf985hc5.aspx
http://msdn.microsoft.com/ru-ru/library/435f1dw2.aspx
http://msdn.microsoft.com/ru-ru/library/435f1dw2.aspx
javascript:void(0)

Interfaces, like classes, define a set of properties, methods, and events. But unlike classes, interfaces do not

provide implementation. They are implemented by classes, and defined as separate entities from classes. An

interface represents a contract, in that a class that implements an interface must implement every aspect of that

interface exactly as it is defined.

To define an interface:

interface ISampleInterface

{

 void doSomething();

}

To implement an interface in a class:

class SampleClass : ISampleInterface

{

 void ISampleInterface.doSomething()

 {

 // Method implementation.

 }

}

Generics

Classes, structures, interfaces and methods in the .NET Framework can type parameters that define types of

objects that they can store or use. The most common example of generics is a collection, where you can specify the

type of objects to be stored in a collection.

To define a generic class:

Public class SampleGeneric<T>

{

 public T Field;

}

To create an instance of a generic class:

SampleGeneric<string> sampleObject = new SampleGeneric<string>();

sampleObject.Field = "Sample string";

Delegates

A delegate is a type that defines a method signature, and can provide a reference to any method with a

compatible signature. You can invoke (or call) the method through the delegate. Delegates are used to pass

methods as arguments to other methods.

To create a delegate:

public delegate void SampleDelegate(string str);

javascript:void(0)
javascript:void(0)

To create a reference to a method that matches the signature specified by the delegate:

class SampleClass

{

 // Method that matches the SampleDelegate signature.

 public static void sampleMethod(string message)

 {

 // Add code here.

 }

 // Method that instantiates the delegate.

 void SampleDelegate()

 {

 SampleDelegate sd = sampleMethod;

 sd("Sample string");

 }

}

