Answer on Question#39537 - Programming - C++

Bitonic sort

#include <iostream>
#include "time.h"
#include "math.h"
#include <fstream>
#include <iomanip>
#include <string>

using namespace std;

void bitonic_sort_threaded(bool up, int x[], int left, int right, int k);
void bitonic_merge_threaded(bool up, int x[], int left, int right, int k);
void bitonic_sort(bool up, int x[], int left, int right);

void bitonic_merge(bool up, int x[], int left, int right);

void bitonic_compare(bool up, int x[], int left, int right);

int main(void)

{
int n;
cin >>n;
int left =0;
intright=n-1;

int *A = new int[n];

for (inti=0;i<n;i++)
{
cin >> A[i];

}

bitonic_sort(true, A, left, (left + right) / 2);
bitonic_sort(false, A, (left + right) / 2 + 1, right);
bitonic_merge(true, A, left, right);

for (inti=0;i<n;i++)
{

cout << "\n" << AJi];

}



delete[] A;

system("pause");
return O;

}

void bitonic_sort(bool up, int x[], int left, int right)
{
if (right - left > 0)
{
bitonic_sort(true, x, left, (left + right) / 2);
bitonic_sort(false, x, (left + right) / 2 + 1, right);
bitonic_merge(up, x, left, right);
}
}

void bitonic_merge(bool up, int x[], int left, int right)
{
if (right - left > 0)
{
bitonic_compare(up, x, left, right);
bitonic_merge(up, x, left, (left + right) / 2);
bitonic_merge(up, x, (left + right) / 2 + 1, right);
}
}

void bitonic_compare(bool up, int x[], int left, int right)
{
int dist = (right - left + 1) / 2;
for (int i = left; i < left + dist; i++)
{
if ((x[i] > x[i + dist]) == up)
{
int tmp = x[i];
x[i] = x[i + dist];
x[i + dist] = tmp;
}
}
}



Mergesort

#include <iostream>
#define ARRAY_SIZE 5

using namespace std;

void MergeSort(int arr[], int p, int r);
void Merge(int arr[], int p, int g, int r);

int main(void)
{
int array[ARRAY_SIZE];
inti=0;
cout << "\nEnter the Array elements : \n";
for (i = 0; i < ARRAY_SIZE; i++)
{
cin >> arrayl[i];

}

/*calling MergeSort()*/
MergeSort(array, 0, ARRAY_SIZE - 1);

/*After sorting, printing the array elements*/
cout << "\nAfter sorting array elements : ";
for (i = 0; i < ARRAY_SIZE; i++)
{

cout << " \n" << arrayl[il;

}

system("pause");
return O;

/*It does the merge-sort on the array
*p is the starting index of array
*ris the ending index of array*/

void MergeSort(int arr[], int p, intr)
{
int q;
if (p<r)
{
q=(r+p)/2;
MergeSort(arr, p, q);



MergeSort(arr,q + 1, r);
Merge(arr, p, q, r);
}
}

/*Merge() does the merging of two sorted subarrays.
*arr[p..q] and arr[g+1..r] are the two sorted arrays.
*|t does the marging without using sentinales*/
void Merge(int arr[], int p, int q, intr)
{

int *L, *R;

inti=0,j=0,n1,n2, k=p;

nl=q-p+1;
n2=r-q;

L = new int[n1];
R = new int[n2];

for (i = 0; i<nl; i++)
Llil = arr[p +i];

for (j = 0; j<n2; j++)
RlI=arr[q+j+1];

[*resetiand j*/
i=0;
j=0;
/*merging the items in sorted order
*till we find end of any array L or R*/
while (i< nl && j<n2)
{
if (L[i] <R[j])
{
arr[k] = L[i];
i=i+1;
}
else
{
arr[k] = R[j;
=i+l
}
k++;
}
/*check whether any array has some elements left
*if some items left then put them to the final O/P array*/



if (i '=n1)
for (; i < nl;i++)
{
arr[k] = L[i];
k++;
}
else if (j = n1)
for (; j < n2; j++)
{
arr[k] = R[j];
k++;
}
delete[] L;
delete[] R;



