
Answer on Question#39537 - Programming - C++

Bitonic sort

#include <iostream>
#include "time.h"
#include "math.h"
#include <fstream>
#include <iomanip>
#include <string>

using namespace std;

void bitonic_sort_threaded(bool up, int x[], int left, int right, int k);
void bitonic_merge_threaded(bool up, int x[], int left, int right, int k);
void bitonic_sort(bool up, int x[], int left, int right);
void bitonic_merge(bool up, int x[], int left, int right);
void bitonic_compare(bool up, int x[], int left, int right);

int main(void)
{
 int n;
 cin >> n;
 int left = 0;
 int right = n - 1;

 int *A = new int[n];

 for (int i = 0; i < n; i++)
 {
 cin >> A[i];
 }

 bitonic_sort(true, A, left, (left + right) / 2);
 bitonic_sort(false, A, (left + right) / 2 + 1, right);
 bitonic_merge(true, A, left, right);

 for (int i = 0; i < n; i++)
 {
 cout << "\n" << A[i];
 }

 delete[] A;

 system("pause");
 return 0;
}

void bitonic_sort(bool up, int x[], int left, int right)
{
 if (right - left > 0)
 {
 bitonic_sort(true, x, left, (left + right) / 2);
 bitonic_sort(false, x, (left + right) / 2 + 1, right);
 bitonic_merge(up, x, left, right);
 }
}

void bitonic_merge(bool up, int x[], int left, int right)
{
 if (right - left > 0)
 {
 bitonic_compare(up, x, left, right);
 bitonic_merge(up, x, left, (left + right) / 2);
 bitonic_merge(up, x, (left + right) / 2 + 1, right);
 }
}

void bitonic_compare(bool up, int x[], int left, int right)
{
 int dist = (right - left + 1) / 2;
 for (int i = left; i < left + dist; i++)
 {
 if ((x[i] > x[i + dist]) == up)
 {
 int tmp = x[i];
 x[i] = x[i + dist];
 x[i + dist] = tmp;
 }
 }
}

Mergesort

#include <iostream>
#define ARRAY_SIZE 5

using namespace std;

void MergeSort(int arr[], int p, int r);
void Merge(int arr[], int p, int q, int r);

int main(void)
{
 int array[ARRAY_SIZE];
 int i = 0;
 cout << "\nEnter the Array elements : \n";
 for (i = 0; i < ARRAY_SIZE; i++)
 {
 cin >> array[i];
 }

 /*calling MergeSort()*/
 MergeSort(array, 0, ARRAY_SIZE - 1);

 /*After sorting, printing the array elements*/
 cout << "\nAfter sorting array elements : ";
 for (i = 0; i < ARRAY_SIZE; i++)
 {
 cout << " \n" << array[i];
 }

 system("pause");
 return 0;
}

/*It does the merge-sort on the array
*p is the starting index of array
r is the ending index of array/

void MergeSort(int arr[], int p, int r)
{
 int q;
 if (p < r)
 {
 q = (r + p) / 2;
 MergeSort(arr, p, q);

 MergeSort(arr, q + 1, r);
 Merge(arr, p, q, r);
 }
}

/*Merge() does the merging of two sorted subarrays.
*arr[p..q] and arr[q+1..r] are the two sorted arrays.
It does the marging without using sentinales/
void Merge(int arr[], int p, int q, int r)
{
 int *L, *R;
 int i = 0, j = 0, n1, n2, k = p;

 n1 = q - p + 1;
 n2 = r - q;
 L = new int[n1];
 R = new int[n2];

 for (i = 0; i<n1; i++)
 L[i] = arr[p + i];
 for (j = 0; j<n2; j++)
 R[j] = arr[q + j + 1];

 /*reset i and j*/
 i = 0;
 j = 0;
 /*merging the items in sorted order
 till we find end of any array L or R/
 while (i < n1 && j < n2)
 {
 if (L[i] < R[j])
 {
 arr[k] = L[i];
 i = i + 1;
 }
 else
 {
 arr[k] = R[j];
 j = j + 1;
 }
 k++;
 }

 /*check whether any array has some elements left
 if some items left then put them to the final O/P array/

 if (i != n1)
 for (; i < n1; i++)
 {
 arr[k] = L[i];
 k++;
 }
 else if (j != n1)
 for (; j < n2; j++)
 {
 arr[k] = R[j];
 k++;
 }

 delete[] L;
 delete[] R;
}

