Answer on Question#39348 - Programming - C++

#include <iostream>
using namespace std;

class list
{
public:
struct node {
int value;
struct node *next;
} *head, *tail, *ptr;

list():head(NULL),tail(NULL){} // constructor
~list(); // destructor

struct list::node* initNode(int);

void insertNode(int value);
struct list::node* locateToNodeWithValue(int);
void deleteNode(int value);
void printAllEvenNumbers();

void displayList(struct list::node*)const ;
void displayNode(struct list::node*) const;
B

list::~1list() {

node *current,*temp;

current = head;

temp = head;

while(current != NULL) {
current = current->next;
delete temp;
temp = current;

by

struct list::node* list::initNode(int v) {
struct node *ptr = new node;

// error? then just return
if(ptr == NULL)
return static_cast<struct node *>(NULL);
// assign it
// then return pointer to the node
else {
ptr->value = v ;

return ptr;

// adding to the end of list
void list::insertNode(int value) {

}

struct node *newNode = this->initNode(value);

// if there is no node, put it to head
if(head == NULL) {

head = newNode;

tail = newNode;

}

// link in the new_node to the tail of the list
// then mark the next field as the end of the list
// adjust tail to point to the last node

tail->next = newNode;
newNode->next = NULL;
tail = newNode;

struct list::node* list::locateToNodeWithValue(int value) {

ptr=head;
while(ptr!=NULL) {

if(value==ptr->value)

return ptr;

ptr = ptr->next;
L
cout<<"Element with value "<< value<<" not found"<<endl;
return NULL;

}
void list::deleteNode(int value)
{
ptr=locateToNodeWithValue(value);
if (ptr==NULL){
return;
¥
struct node *temp, *prev;
temp = ptr; // node to be deleted

prev = head; // start of the list, will cycle to node before temp

if(temp == prev) { // deleting first node?
head = head->next; // moves head to next node
if(tail == temp) // is it end, only one node?
tail = tail->next; // adjust end as well
delete temp ; // free up space
}
else { // if not the first node, then
while(prev->next != temp) { // move prev to the node before
prev = prev->next; // the one to be deleted
}
prev->next = temp->next; // link previous node to next
if(tail == temp) // if this was the end node,
tail = prev; // then reset the end pointer
delete temp; // free up space

}

}

void list::printAllEvenNumbers(){
list::node* ptr=head;
while(ptr!=NULL){
if ((ptr->value % 2)==0)
displayNode(ptr);
ptr=ptr->next;

¥
}
void list::displayNode(struct list::node *ptr) const
{
cout << "node: "<<ptr->value << endl;
b
void list::displaylList(struct list::node *ptr) const
{
if(!ptr) cout << "Nothing to display" << endl;
while(ptr) {
displayNode(ptr);
ptr = ptr->next;
}
}

int main()
int value;
list mylList;
list::node* ptr;
//2. Insert a node to a list

myList.insertNode(1);
myList.insertNode(13);
myList.insertNode(4);
myList.insertNode(6);
myList.insertNode(42);
myList.insertNode(12);

myList.displayList(myList.head);
value=42;

//3.locate to an element in a list by value
list::node* fortyTwoPtr=myList.locateToNodeWithValue(value);

cout<<"The next node after the node with vlaue 42 has value "<<fortyTwoPtr-
>next->value<<endl;

//4. delete element by value
//from middle
myList.deleteNode(42);

cout<<endl<<"deleted 42:"<<endl;
myList.displayList(myList.head);

//from start
myList.deleteNode(1);
cout<<endl<<"deleted 1:"<<endl;
myList.displayList(myList.head);

//from end
myList.deleteNode(12);
cout<<endl<<"deleted 12:"<<endl;
myList.displayList(myList.head);

//attempt to delete unexisting node
myList.deleteNode(46);
myList.displayList(myList.head);

cout<<"print even numbers:"<<endl;
myList.printAllEvenNumbers();

return 0;

