
Answer on Question#39348 - Programming - C++
#include <iostream>

using namespace std;

class list
{
public:
 struct node {
 int value;
 struct node *next;
 } *head, *tail, *ptr;

 list():head(NULL),tail(NULL){} // constructor
 ~list(); // destructor

 struct list::node* initNode(int);

 void insertNode(int value);
 struct list::node* locateToNodeWithValue(int);
 void deleteNode(int value);
 void printAllEvenNumbers();

 void displayList(struct list::node*)const ;
 void displayNode(struct list::node*) const;
};

list::~list() {
 node *current,*temp;
 current = head;
 temp = head;
 while(current != NULL) {
 current = current->next;
 delete temp;
 temp = current;
 }
}

struct list::node* list::initNode(int v) {
 struct node *ptr = new node;

 // error? then just return
 if(ptr == NULL)
 return static_cast<struct node *>(NULL);
 // assign it
 // then return pointer to the node
 else {
 ptr->value = v ;

 return ptr;
 }
}

// adding to the end of list
void list::insertNode(int value) {
 struct node *newNode = this->initNode(value);

 // if there is no node, put it to head
 if(head == NULL) {
 head = newNode;
 tail = newNode;
 }

 // link in the new_node to the tail of the list
 // then mark the next field as the end of the list
 // adjust tail to point to the last node

 tail->next = newNode;
 newNode->next = NULL;
 tail = newNode;
}

struct list::node* list::locateToNodeWithValue(int value) {
 ptr=head;
 while(ptr!=NULL) {
 if(value==ptr->value)
 return ptr;
 ptr = ptr->next;
 }
 cout<<"Element with value "<< value<<" not found"<<endl;
 return NULL;
}

void list::deleteNode(int value)
{
 ptr=locateToNodeWithValue(value);
 if (ptr==NULL){
 return;
 }

 struct node *temp, *prev;
 temp = ptr; // node to be deleted
 prev = head; // start of the list, will cycle to node before temp

 if(temp == prev) { // deleting first node?
 head = head->next; // moves head to next node
 if(tail == temp) // is it end, only one node?
 tail = tail->next; // adjust end as well
 delete temp ; // free up space
 }
 else { // if not the first node, then
 while(prev->next != temp) { // move prev to the node before
 prev = prev->next; // the one to be deleted
 }
 prev->next = temp->next; // link previous node to next
 if(tail == temp) // if this was the end node,
 tail = prev; // then reset the end pointer
 delete temp; // free up space
 }

}

void list::printAllEvenNumbers(){
 list::node* ptr=head;
 while(ptr!=NULL){
 if ((ptr->value % 2)==0)
 displayNode(ptr);
 ptr=ptr->next;
 }
}

void list::displayNode(struct list::node *ptr) const
{
 cout << "node: "<<ptr->value << endl;
}

void list::displayList(struct list::node *ptr) const
{
 if(!ptr) cout << "Nothing to display" << endl;
 while(ptr) {
 displayNode(ptr);
 ptr = ptr->next;
 }
}

int main()
{
 int value;

 list myList;

 list::node* ptr;

 //2. Insert a node to a list

 myList.insertNode(1);
 myList.insertNode(13);
 myList.insertNode(4);
 myList.insertNode(6);
 myList.insertNode(42);
 myList.insertNode(12);

 myList.displayList(myList.head);

 value=42;

 //3.locate to an element in a list by value
 list::node* fortyTwoPtr=myList.locateToNodeWithValue(value);

 cout<<"The next node after the node with vlaue 42 has value "<<fortyTwoPtr-
>next->value<<endl;

 //4. delete element by value
 //from middle
 myList.deleteNode(42);

 cout<<endl<<"deleted 42:"<<endl;
 myList.displayList(myList.head);

 //from start
 myList.deleteNode(1);
 cout<<endl<<"deleted 1:"<<endl;
 myList.displayList(myList.head);

 //from end
 myList.deleteNode(12);
 cout<<endl<<"deleted 12:"<<endl;
 myList.displayList(myList.head);

 //attempt to delete unexisting node
 myList.deleteNode(46);
 myList.displayList(myList.head);

 cout<<"print even numbers:"<<endl;
 myList.printAllEvenNumbers();

 return 0;
}

