
Polymorphism is a programming language feature that allows values of different data types to be

handled using a uniform interface.

Let we have superclass Animal and these subclasses: Dog, Cat, Wolf, Hippo and Lion.

First of all, with polymorphism, the reference and the object can be different: Animal myCat= new Cat();.

The reference variable type is declared as Animal, but the object is created as new Cat().

With polymorphism, the reference type can be a superclass of the actual object type. This lets to do

things like make polymorphic arrays.

Animal[] animals = new Animal[5];

Animals[0] = new Dog();

Animals[1] = new Cat();

Animals[2] = new Wolf();

Animals[3] = new Hippo();

Animals[4] = new Lion();

for (int i=0; i<animals.length; i++) {

animals[i].eat();

animals[i].roam(); }

Declare an array of type Animal. In other
words, an array that will hold objects of type
Animal.

We can put any subclass of Animal in the
Animal array.

We get to loop through the array and call one
of the Animal-class methods, and every object
does the right thing.

We can have polymorphic arguments and return types.

Class Vet {

public void giveShot (Animal a) {

a.makeNoise(); }}

class PetOwner {

public void start() {

Vet v = new Vet();

Dog d = new Dog();

Hippo h = new Hippo();

v.giveShot(d);

v.giveShot(h); }}

The Animal parameter can take any Animal
type as the argument. And when the Vet is
done giving the shot, it tells the Animal to
makeNoise(), and whatever Animal is really
out there on the heap, that’s whose
makeNoise() method will run.

The Vet’s giveShot() method can take any
Animal we give it.

Dog’s makeNoise() runs.

Hippo’s makeNoise() runs.

So with polymorphism, we can write code that doesn’t have to change when we introduce new

subclass types into the program.

http://www.AssignmentExpert.com

http://www.AssignmentExpert.com

