Basic Vectors Facilities

Arrays are a programming tool that provide a mechanism to store a group of values
under a single name. The values can be any available data type

(e.g., int, double, string, etc.). In C++, we talk about vectors, rather than arrays.
Vectors are declared with the following syntax:

vector<type> variable name (number_of_elements);

The number of elements is optional. You could declare it like this:

vector<type> variable name;
And that would declare an empty vector — a vector that contains zero elements.

The argument type in angle-brackets indicates the data type of the elements of the
vector; variable name is the name that we assign to the vector, and the

optional number of elements may be provided to indicate how many elements the
vector will initially contain.

Below are several examples of vector declarations:

vector<int> values (5); // Declares a vector of 5 integers
vector<double> grades (20); // Declares a vector of 20 doubles
vector<string> names; // Declares a vector of strings,

// initially empty (contains 0 strings)

When using vectors in our programs, we must provide the
appropriate #include directive at the top, since vectors are a Standard Library facility,
and not a built-in part of the core language:

#include <vector>

After a vector has been declared specifying a certain number of elements, we can refer
to individual elements in the vector using square brackets to provide
a subscript or index, as shown below:

grades|[5]

When using a vector or array followed by square brackets with a subscript, the resulting
expression refers to one individual element of the vector or array, as opposed to the
group of values, and roughly speaking, you can use that expression as you would use a
variable of the corresponding data type. In the above example, the data type of the
expression grades|[5] is double, SO you can use it as you would use a variable of
type double — you can assign a value to it (a numeric value, with or without decimals),
or you can retrieve the value, use it for arithmetic operations, etc.

http://www.AssignmentExpert.com

http://www.AssignmentExpert.com

The above extends to other data types as well; if we have a vector of strings

called names, the expression names [0] iS astring, referring to the first element in the
vector names. We can do anything with this expression that we would do with

a stringvariable. For instance, the expression names [0] . length () gives us the
length of this string.

An important condition for the index or subscript is that it must indicate a valid element
in the vector. Elements in a vector are “numbered” starting with element 0. This means
that valid subscript values are numbers between 0 and size-1, where size is the
number of elements of the vector. For the example above of grades, valid subscripts
are between 0 and 19.

The following fragment shows an example of a program that asks the user for marks for
a group of 20 students and stores them in a vector.

#include <iostream>
#include <vector>
using namespace std;

int main ()

{
vector<double> student marks (20) ;

for (vector<double>::size type i = 0; i < 20; i++)
{
cout << "Enter marks for student #" << i+l
<< ": " <L flush;
cin >> student marks[i];

}
// ... Do some stuff with the wvalues

return O;

The first statement declares a vector called student_marks with capacity to hold 20
values of type double. These values can be accessed individually

as student _marks[0] to student marks[19]. The for loop has the counter i go
from 0 to 19, allowing access to each individual element in a sequential manner,
starting at 0 and going through each value from 0 to 19, inclusively.

Notice the data type for the subscript, vector<double>: :size_type. As with
strings, class vector<type> provides asize type to represent positions and sizes.
It is always recommended that you use this data type when dealing with vectors.

for loops usually go hand in hand with the use of vectors or arrays, as they provide a
convenient way to access every element, one at a time, using the loop control variable
as the subscript. This does not mean that we must use for loops whenever we require
access to the elements of a vector — it only means that quite often, a £or loop provides
a convenient approach and we choose it as the mechanism to access the elements.

http://www.AssignmentExpert.com

Resizing Vectors

Vectors have one important advantage with respect to C-style arrays: vectors can be
resized during the execution of the program to accommodate any extra elements as
needed, or even to “shrink” the vector.

In the example from the previous fragment above, if we don't know ahead of time (i.e.,
at the time we are writing the program) that there are 20 students, we could obtain that
information at run-time (e.g., prompt the user for the number of students) and resize the
vector accordingly, as shown below (though we notice that the example is somewhat
silly, in that we could have waited until having the value of num students and then
declare the vector initializing it with that size):

vector<double> student marks;
// no size specified: vector contains
// no elements

int num students;
cout << "Number of students: " << flush;
cin >> num students;

student marks.resize (num_students) ;

for (vector<double>::size type i = 0; i < num_students; i++)
{
cout << "Enter marks for student #" << i+l
<< ": " <L flush;
cin >> student marks[i];

Notice that the valid subscripts for a vector with num _students elements
are 0 to num_students-1. For that reason, the forloop starts at 0 and goes while i is
less than num_elements.

It is always a better idea to control £or loops using the size method of vector. That
way, we make sure that we loop only through the right subscript values, and we avoid
the risk of accidentally exceeding the limits of the vector:

for (vector<double>::size type i = 0; i < student marks.size(); i++)

The difference in this case seems insignificant, and it almost sounds unnecessary to
use the size method; but again, it's always a good idea to stick to good programming
practices that may be very convenient in larger or more complex programs.

In some situations, we can not determine the number of elements before reading them.
That is, we may have to read numbers to then determine when to stop reading them (an
example would be, keep reading values until you read a negative value). In such
situations, the trick of resizing the vector is not an option (at least not the way it is
used in the example above).

http://www.AssignmentExpert.com

Vectors provide a convenient way of handling this type of situation. We can use

the push_back method to append one element at the end of the array. The operation
includes resizing to one more element to accommodate for the extra element, and
storing the given value at the end of the array.

The example below shows the use of push_back to accept numbers from the user and
store them in a vector, until the user indicates that there are no more numbers.

#include <iostream>
#include <vector>
using namespace std;

int main ()

{
vector<double> student marks;
double mark;
char answer;

cout << "Enter marks (y/n)? " << flush;
cin >> answer;

while (answer == 'y' || answer == 'Y')
{
cout << "Enter value: " << flush;
cin >> mark;

student marks.push back (mark);

cout << "More students (y/n)? " << flush;
cin >> answer;

return O;

Inserting and Removing Elements

Methods push_back and pop_back insert and remove (respectively) elements at the
end of the vector. For situations where we need to insert or remove at an arbitrary
position, we have methods remove and remove. We notice that these methods are
inefficient with a vector (they take linear time, since all the remaining elements from
the given position to the end have to be shifted). However, for situations where we must
support these operations, class vector does provide the facilities to do so.

Methods insert and remove use iterators as parameters to indicate the position at
which we want to insert or remove the element(s). However, a “quick and dirty” solution
is available, given the nature of vector iterators (they support operations essentially
identical to pointer arithmetic). The code sample below illustrates these features:

http://www.AssignmentExpert.com

#include <vector>
using namespace std;

int main ()
{
vector<double> values (10) ;
// Create vector with 10 elements (initialized to 0.0)

values.insert (values.begin() + 5, 1.4142);
// Insert sqr root of 2 at position 5 (before the element that
was at position 5)

values.remove (values.begin() + 3);
// Remove element at position 3

In the sample above, the expressions values.begin () + n work similarly to the idea
of getting a pointer to element n of an array — we get a pointer to the first element of the
array, then add an integer offset to obtain a pointer pointing n elements after the
beginning of the array. The expression values.begin () returns an iterator pointing
to the first element of the vector, and adding an integer value n results in an iterator
pointing n positions after the first element, providing the required parameter

for insert andremove methods.

http://www.AssignmentExpert.com

