Answer on Question \#90934, Physics / Mechanics | Relativity

The wavelength of light in vacuum is 5000 A . When it travels normally through diamond the thickness of 1 mm , what is the number of waves of lights in 1 mm of diamond? Refractive index of diamond is 2.417.

Solution:

If λ be the wavelength of light in vacuum and f is the frequency of the wave then the velocity of light in vacuum is

$$
\begin{equation*}
c=f \lambda \tag{1}
\end{equation*}
$$

If v be the velocity and λ^{\prime} be the wavelength of light in diamond then

$$
\begin{equation*}
v=f \lambda^{\prime} . \tag{2}
\end{equation*}
$$

Dividing (1) by (2)

$$
\frac{c}{v}=\frac{\lambda}{\lambda^{\prime}}
$$

Now refractive index of diamond, $n=\frac{c}{v}$
Then

$$
\begin{aligned}
n & =\frac{\lambda}{\lambda^{\prime}} \\
\lambda^{\prime} & =\frac{\lambda}{n}
\end{aligned}
$$

Substituting $\lambda=5000 \AA, n=2.417$

$$
\begin{aligned}
& \lambda^{\prime}=\frac{5000}{2.417} \\
& \lambda^{\prime}=2068.68 \AA
\end{aligned}
$$

\therefore The wavelength of light in diamond is $2068.68 \AA$
The number of waves in $2068.68 \AA$ is 1
\therefore The number of waves in 1 mm is $=\frac{1 \mathrm{~mm}}{2068.68 \AA}$

$$
\begin{aligned}
& =\frac{10^{-3} \mathrm{~m}}{2068.68 \times 10^{-10} \mathrm{~m}} \\
& =4834
\end{aligned}
$$

Answer: The number of waves in 1 mm thickness of diamond is 4834 .
Answer provided by https://www.AssignmentExpert.com

