Let:
$P=164.9 \mathrm{~J} / \mathrm{s}$
$D=2,5 \mathrm{~cm}=0.025 \mathrm{~m}$
$T 1=500^{\circ} \mathrm{C}$
$T 2=20^{\circ} \mathrm{C}$
$l=30 \mathrm{~cm}=0.3 \mathrm{~m}$
$k=$?

According to the Fourier's law:
$\boldsymbol{Q}=\boldsymbol{t} * \boldsymbol{k} \frac{\boldsymbol{S \Delta T}}{l} ;$
As: $\boldsymbol{P}=\frac{\boldsymbol{Q}}{\boldsymbol{t}}$;
$P=\boldsymbol{k} \frac{S \Delta T}{l} ;$
$k=\frac{P l}{S \Delta T} ;$
$S=\pi * \frac{D^{2}}{4}$
Let's enter the data:
$S=3.14 * \frac{0.025^{2}}{4}=0.000491 \mathrm{~m}^{2}$
$\Delta T=T 1-T 2=500-20=480^{\circ}$
$k=\frac{164.9 * 0.3}{0.000491 * 480}=209,9 \mathrm{~W} / \mathrm{mC}$
Answer: "B" 209, 9 W/mC

