A particle mass m, traveling at a speed of v, strikes a stationary particle mass $2 m$. As a result the particle of mass m, is deflected through an angle of 45 degrees at a speed of $v / 2$. What is the speed and direction of mass $2 m$?

Solution.

According to the law of conservation of momentum, the total momentum of an isolated system is constant:

$$
\begin{gather*}
m \vec{\vartheta}+0=\frac{1}{2} m \vec{\vartheta}+2 m \vec{\vartheta}^{\prime} \\
\vec{\vartheta}=\frac{1}{2} \vec{\vartheta}+2 \vec{\vartheta}^{\prime} \tag{1}
\end{gather*}
$$

Let's find projections of (1) into coordinate axes:

Ox axis:

$$
\begin{equation*}
\vartheta=\frac{1}{2} \vartheta \cos 45^{\circ}+2 \vartheta^{\prime} \cos \theta \tag{2}
\end{equation*}
$$

Oy axis:

$$
\begin{equation*}
\frac{1}{2} \vartheta \sin 45^{\circ}=2 \vartheta^{\prime} \sin \theta \tag{3}
\end{equation*}
$$

From (3):

$$
\begin{equation*}
\vartheta^{\prime}=\frac{\vartheta \sin 45^{\circ}}{4 \sin \theta} \tag{4}
\end{equation*}
$$

Let's substitute (4) into (2):

$$
\begin{gathered}
\vartheta=\frac{1}{2} \vartheta \cos 45^{\circ}+2 \frac{\vartheta \sin 45^{\circ}}{4 \sin \theta} \cos \theta \\
2=\cos 45^{\circ}+\frac{\sin 45^{\circ}}{\tan \theta} \\
\frac{\sin 45^{\circ}}{\tan \theta}=2-\cos 45^{\circ} \\
\tan \theta=\frac{\sin 45^{\circ}}{2-\cos 45^{\circ}}=\frac{0.7071}{1.2929}=0.5469 \\
\theta=29^{\circ}
\end{gathered}
$$

Let's substitute the value of θ into (4):

$$
\vartheta^{\prime}=\frac{\vartheta \sin 45^{\circ}}{4 \sin 29^{\circ}}=\frac{0.7071}{1.9392} \vartheta=0.4 \vartheta
$$

Answer: $\vartheta^{\prime}=0.4 \vartheta, \theta=29^{\circ}$

