Two resistors of 4Ω and 6Ω are connected in parallel circuit. The total amount of current flowing in the circuit is 30 Ampere. Find the current of each resistor.

Solution:

$I=30 A$,
$R_{1}=4 \Omega$,
$R_{2}=6 \Omega$.
According to the first Kirchhoff rule:

$$
I=I_{1}+I_{2} .
$$

According to the second Kirchhoff rule:

$$
I_{1} R_{1}-I_{2} R_{2}=0
$$

Solve this system of equations:

$$
\begin{gathered}
\left(I-I_{2}\right) R_{1}-I_{2} R_{2}=0 \\
I R_{1}=I_{2}\left(R_{1}+R_{2}\right)
\end{gathered}
$$

$$
\begin{aligned}
I_{2} & =\frac{I R_{1}}{R_{1}+R_{2}}=\frac{30 \cdot 4}{4+6}=12 \mathrm{~A} \\
I_{1} & =I-I_{2}=30-12=18 \mathrm{~A}
\end{aligned}
$$

Answer: The current of first resistor is 18 A , the current of second resistor is 12 A .
Answer provided by https://www.AssignmentExpert.com

