A salesperson leaves the office and drives 26 km due north along a straight highway. A turn is made onto a highway that leads in the direction 30.0° north of east. The driver continues on the highway for a distance of 62 km and then stops. Using graphical methods, what is the total displacement of the salesperson from the office?
Why the answer is 1 . Approximately 79 km ?

Solution:

Figure out the driven distances (not to scale):

On this figure:
$A B=26 \mathrm{~km} ;$
$B C=62 \mathrm{~km}$
$A C$ - the unknown total displacement of the salesperson from the office.
From the rectangular triangle ADC we get

$$
A C=\sqrt{(A B+B D)^{2}+C D^{2}}
$$

From the rectangular triangle $B D C$ we get

$$
B D=B C \cdot \cos 60^{\circ},
$$

$$
C D=B C \cdot \sin 60^{\circ} .
$$

So
$A C=\sqrt{\left(A B+B C \cdot \cos 60^{\circ}\right)^{2}+\left(B C \cdot \sin 60^{\circ}\right)^{2}}=\sqrt{(26+62 \cdot 0.5)^{2}+(62 \cdot 0.87)^{2}}=78.5 \mathrm{~km}$
Answer: the total displacement of the salesperson from the office is 78.5 km .
Answer provided by https://www.AssignmentExpert.com

