Question \#85047 - Physics — Molecular Physics | Thermodynamics

When a polar bear jumps on an iceberg, he notices that his 420 lb weight is just sufficient to sink the iceberg. What is the weight of the iceberg? Density of salt water is $64 \mathrm{lb} / \mathrm{ft}^{3}$ and that of iceberg is $57.2 \mathrm{lb} / \mathrm{ft}^{3}$.

Solution

Let us introduce next notations
V_{i}-volume of the iceberg, ρ_{i}-density of the iceberg, ρ_{w}-density of the water,
m_{b} - mass of the bear, g - is the acceleration due to gravity, Archimedes force: F_{A} and force of gravity F_{g}, where $\rho_{i} V_{i}$-is the mass of iceberg.

In our system we have only two forces F_{A} and F_{g} witch joined by condition of equilibrium

$$
\begin{equation*}
F_{A}=F_{g}, \tag{1}
\end{equation*}
$$

From the Archimedes law we obtain $F_{A}=\rho_{W} g V_{i}$, and the resulting force of gravity for bear and iceberg: $F_{g}=\left(\rho_{i} V_{i}+m_{b}\right) g$.

Now from (1)

$$
\rho_{w} g V_{i}=\left(\rho_{i} V_{i}+m_{b}\right) g \Rightarrow V_{i}=\frac{m_{b}}{\rho_{w}-\rho_{i}}
$$

So the mass of iceberg

$$
m_{i}=V_{i}=\rho_{i} \frac{m_{b}}{\rho_{w}-\rho_{i}}=57.2\left[\mathrm{lb} / \mathrm{ft}^{3}\right] \frac{420[\mathrm{lb}]}{64\left[\mathrm{lb} / \mathrm{ft}^{3}\right]-57.2\left[\mathrm{lb} / \mathrm{ft}^{3}\right]}=3532.94[\mathrm{lb}]
$$

Answer: weight of the iceberg 3532.94 lb

Answer provided by https://www.AssignmentExpert.com

