

Question #85012— Physics — Quantum Mechanics

For a motion of a particle of mass μ in a spherically symmetric potential show that L^2 and L_z commute with the Hamiltonian.

Solution

Hamiltonian of the particle in spherically symmetric potential $V(r)$ have form in spherical coordinates

$$H = -\frac{\hbar^2}{2\mu} \Delta + V(r) = -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial r^2} + \frac{1}{2\mu r^2} \hat{L}^2 + V(r),$$

where $\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]$.

and L_z in spherical coordinates $L_z = -i\hbar \frac{\partial}{\partial \phi}$.

Functions L_z , \hat{L}^2 commute with any function of r

$$[\hat{L}^2, f(r)] = [L_z, f(r)] = 0,$$

So

$$[H, \hat{L}^2] = \left[\frac{1}{2\mu r^2} \hat{L}^2, \hat{L}^2 \right] = 0,$$

$$[H, L_z] = \left[\frac{1}{2\mu r^2} \hat{L}^2, L_z \right] = 0,$$

because $\hat{L}^2 \neq \hat{L}^2(\phi)$

Answer: $[H, L_z] = [H, \hat{L}^2] = 0$

Answer provided by <https://www.AssignmentExpert.com>