Answer on Question \#84692 Physics / Other

A thin metallic shell of radius $R=40 \mathrm{~cm}$ has a charge of $Q=-25 \mathrm{nC}$ on it. At the center of the sphere is a point charge of $q=35 \mathrm{nC}$. What is the electric field $r=50 \mathrm{~cm}$ from the center of the shell?

Solution:

The Gauss's law for the electric flux through a closed surface

$$
\oiint \mathbf{E} d \mathbf{A}=\frac{1}{\varepsilon_{0}} Q_{\mathrm{net}}
$$

Let us consider a closed surface as a sphere of radius $r>R$. Thus

$$
\begin{gathered}
\oiint \mathbf{E} d \mathbf{A}=E \oiint d A=E \times 4 \pi r^{2} \\
Q_{\mathrm{net}}=Q+q=-25 \mathrm{nC}+35 \mathrm{nC}=10 \mathrm{nC}
\end{gathered}
$$

So, electric field

$$
\begin{gathered}
E=\frac{Q_{\mathrm{net}}}{4 \pi \varepsilon_{0} r^{2}} \\
=\frac{10 \times 10^{-9} \mathrm{C}}{4 \pi \times 8.85 \times 10^{-12} \frac{\mathrm{~F}}{\mathrm{~m}} \times 0.5^{2} \mathrm{~m}^{2}} \\
=360 \frac{\mathrm{~N}}{\mathrm{C}}
\end{gathered}
$$

Answer: $360 \frac{\mathrm{~N}}{\mathrm{C}}$ outward
Answer provided by https://www.AssignmentExpert.com

