Answer on Question \# 84420, Physics / Atomic and Nuclear Physics

Question 1. The disintegration constant of $238 U$ is $\lambda=4.87 \cdot 10^{-18} s^{-1}$. Calculate its half-life $t_{1 / 2}$ (in years). Also calculate the number of disintegration per second from $m=1$ gram of Uranium. It is given that Avogadro's number $N_{A}=6.02 \cdot 10^{23}$.

Solution.

$$
t_{1 / 2}=\frac{\ln 2}{\lambda}=\frac{0.693}{4.87 \cdot 10^{-18}} \approx 0.14 \cdot 10^{18} \mathrm{~s} \approx 4.5 \cdot 10^{9} \mathrm{y}
$$

The atomic mass of $238 U$ is $M=238 u . \nu=\frac{m}{M}=\frac{N}{N_{A}} \Rightarrow N=\frac{m N_{A}}{M}$. The number of decays per second of a radioactive sample is

$$
A=\lambda N=\frac{\lambda m N_{A}}{M} \approx 12318 \mathrm{~s}^{-1}
$$

