
Answer on Question #84387 – Physics – Quantum Mechanics 

Find the probability distributions of the orbital angular momentum variables L2 and Lz for the 

following orbital state functions: 

(a) Ψ(x) = f(r) sin θ cos φ, 

(b) Ψ(x) = f(r)(cos θ)2, 

(c) Ψ(x) = f(r) sin θ cos θ sin φ. 

Here r, θ, φ are the usual spherical coordinates, and f(r) is an arbitrary radial function (not 

necessarily the same in each case) into which the normalization constant has been absorbed 

 

Solution. Distributions are as follows: 
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