It is a projectile motion problem:
A quarter circle A, C, E. a circus motor stunts man wishes to go from A to C. $C E$ is the height 5 m . From A point motor starts with an angle (thetha). From A to C its direction $A D C . A E=10 . B$ is in middle so $A B=E B=5$. In the road $A B C$ motors velocity is $10 \mathrm{~ms} / 1$ and friction force is 10 N . total mass is 200 kg So whats the thetha?? Not the angle <CBE. The quarter circle ACE like projectile angle. Whats thetha(θ)?

Solution. In solving the problem, I will proceed from the way I understood it.
We have a quarter circle ACE. We depict the situation described in the condition of the problem in the figure.

And we get a purely trigonometric problem. Since the task is similar to the task of projectile motion, this is a parabolic motion, and the CAE angle will be the theta angle. We define this angle from the sine theorem: $\frac{C E}{\sin \angle C A E}=\frac{\sqrt{\left(C E^{2}+A E^{2}\right)}}{1} . \sin \angle C A E=\frac{\sqrt{5}}{5} . \angle C A E=\arcsin \left(\frac{\sqrt{5}}{5}\right)$.
Answer: thetha is $\arcsin \left(\frac{\sqrt{5}}{5}\right)$.
Answer provided by https://www.AssignmentExpert.com

