Question. A car travels $a = 20 \ km$ due North and then $b = 35 \ km$ in a direction $\alpha = 60^{\circ}$ west of North. Using a graph, find the magnitude ($|\vec{r}|$) and direction (β) of a single vector that gives the net effect of the car's trip. **Solution**

To calculate magnitude $|\vec{r}|$, we can use the law of cosines. The internal angle $\gamma = 180^{\circ} - 60^{\circ} = 120^{\circ}$. We have

 $|\vec{r}|^2 = a^2 + b^2 - 2ab\cos\gamma \rightarrow$

$$|\vec{r}| = \sqrt{20^2 + 35^2 - 2 \cdot 20 \cdot 35 \cdot \cos 120^\circ} = 48.22 \ km.$$

The direction of \vec{r}

$$\frac{b}{\sin\beta} = \frac{|\vec{r}|}{\sin 120^{\circ}} \to \beta = \sin^{-1}\left(\frac{b \cdot \sin 120^{\circ}}{|\vec{r}|}\right) = \sin^{-1}\left(\frac{35 \cdot \sin 120^{\circ}}{48.22}\right) = 38.95^{\circ}.$$

Answer. $|\vec{r}| = 48.22 \ km; \beta = 38.95^{\circ}.$

Answer provided by https://www.AssignmentExpert.com