Answer on Question \#84137, Physics / Mechanics | Relativity

Question. A car travels $a=20 \mathrm{~km}$ due North and then $b=35 \mathrm{~km}$ in a direction $\alpha=60^{\circ}$ west of North. Using a graph, find the magnitude $(|\vec{r}|)$ and direction (β) of a single vector that gives the net effect of the car's trip.

Solution

To calculate magnitude $|\vec{r}|$, we can use the law of cosines. The internal angle $\gamma=180^{\circ}-60^{\circ}=120^{\circ}$. We have

$$
\begin{gathered}
|\vec{r}|^{2}=a^{2}+b^{2}-2 a b \cos \gamma \rightarrow \\
|\vec{r}|=\sqrt{20^{2}+35^{2}-2 \cdot 20 \cdot 35 \cdot \cos 120^{\circ}}=48.22 \mathrm{~km} .
\end{gathered}
$$

The direction of \vec{r}

$$
\frac{b}{\sin \beta}=\frac{|\vec{r}|}{\sin 120^{\circ}} \rightarrow \beta=\sin ^{-1}\left(\frac{b \cdot \sin 120^{\circ}}{|\vec{r}|}\right)=\sin ^{-1}\left(\frac{35 \cdot \sin 120^{\circ}}{48.22}\right)=38.95^{\circ}
$$

Answer. $|\vec{r}|=48.22 \mathrm{~km} ; \beta=38.95^{\circ}$.
Answer provided by https://www.AssignmentExpert.com

