Answer on Question \# 84070, Physics / Molecular Physics | Thermodynamics

Question 1. A bead with mass $2 \cdot 10^{-2} \mathrm{~kg}$ is moving along a wire in the positive direction of an x axis. Beginning at time $t=0$, when the bead passes through $x=0$ with speed $12.0 \mathrm{~m} / \mathrm{s}$, a constant force acts on the bead. The figure indicates the bead's position at times $t_{0}=0 \mathrm{~s}, t_{1}=1 \mathrm{~s}, t_{2}=2 \mathrm{~s}$, and $t_{3}=3 \mathrm{~s}$. The bead momentarily stops at $t=3 \mathrm{~s}$. What is the kinetic energy of the bead at $t=10 \mathrm{~s}$?

Solution. Consider the point $t=3 \mathrm{~s}$: the acceleration must be $a=\frac{\Delta v}{\Delta t}=\frac{-12}{3}=-4 \mathrm{~m} / \mathrm{s}^{2}$. So the particle begins at rest at $t=3 \mathrm{~s}$.
7 s later at $t=10 \mathrm{~s}$ we have velocity $v=a t=-4 \cdot 7=-28 \mathrm{~m} / \mathrm{s}$.

$$
E_{k}=\frac{m v^{2}}{2}=\frac{0.02 \cdot(-28)^{2}}{2}=7.84 \mathrm{~J}
$$

