Answer on Question \#83876, Physics / Electromagnetism

Question:

A coil of wire with 50 turns and 10 cm diameter is placed perpendicularly to a uniform magnetic field of 0.03 T. Calculate the induced e.m.f. if the coil is flipped 60 degree in 30 ms . The coil is connected to an electrical instrument that has resistance of 35 ohm . Calculate the induced current flows in the coil.

Solution:

According to Faraday's law e.m.f. $\quad E=\frac{\pi d^{2} n}{4 \tau} B\left(1-\cos 60^{\circ}\right)=\frac{3.14 \cdot 0.01 \cdot 50 \cdot 0.03 \cdot 0.5}{4 \cdot 0.03}=0.20$ (V). The induced current $I=\frac{E}{R}=\frac{0.2}{35}=5.7(\mathrm{~mA})$.

The answer:
E.m.f. $E=\frac{\pi d^{2} n}{4 \tau} B\left(1-\cos 60^{\circ}\right)=0.20 \mathrm{~V}$.

The induced current $I=\frac{E}{R}=5.7 \mathrm{~mA}$.

