Answer on Question #83828 - physics - Relativity

1. If the 1 kg standard body has an acceleration of $2 m/s^2$ at 20° to the positive direction of an x axis, what are

(a) the x component and

(b) the y component of the net force acting on the body, and

(c) what is the net force in unit-vector notation?

Solution.

a. Calculate the components of force in X-direction by the relation as follows:

X-component of force = $F_X = macos\theta$

Here, m is the mass of body , a is the acceleration of the body and θ is the angle.

Substitute 1 kg for m and 2 m/s^2 for a and 20° for θ .

$$F_X = (1 \ kg)(2 \ m/s^2)(\cos(20^\circ)$$
$$F_X = 1.879 \ m/s^2$$

b. Calculate the components of force in Y-direction by the relation as follows:

Y-component of force = $F_Y = masin\theta$

Here, m is the mass of body , a is the acceleration of the body and heta is the angle.

Substitute 1 kg for m and 2 m/s^2 for a and 20° for θ .

$$F_Y = (1 \ kg)(2m/s^2)(\sin(20^\circ))$$
$$F_Y = 0.684 \ m/s^2$$

c. Calculate the net force in vector form by the relation as follows:

$$F_{NET} = F_X \hat{\imath} + F_Y \hat{\jmath}$$

$$F_{NET} = (1.879\hat{\imath} + 0.684\hat{\jmath})$$

$$F_{NET} = (1.879\hat{\imath} + 0.684\hat{\jmath}) m/s^2$$

Answer:

$$F_X = 1.879 \ m/s^2$$

$$F_Y = 0.684 \ m/s^2$$

$$F_{NET} = (1.879\hat{\imath} + 0.684\hat{\jmath}) \ m/s^2$$

Answer provided by https://www.AssignmentExpert.com