Answer on Question \#83781, Physics / Mechanics | Relativity

Question. A conical solid of diameter $D=1.5 \mathrm{~m}$ and height $H=2 \mathrm{~m}$ was immersed into the river in an inverted position. The density of the water in the river was $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$. If the base of cone was exposed $l=$ 500 mm in height over the water surface, find the density of the cone.

Solution

So,

$$
m g=\rho_{\text {water }} \cdot g \cdot V
$$

where V is the volume of the immersed cone

$$
V=\frac{1}{3} \cdot \pi \cdot r^{2} \cdot h
$$

$$
\frac{H}{h}=\frac{R}{r} \rightarrow \frac{H}{H-l}=\frac{R}{r} \rightarrow r=\frac{R \cdot(H-l)}{H}=\frac{\frac{D}{2} \cdot(H-l)}{H}=\frac{D \cdot(H-l)}{2 H}=\frac{1.5 \cdot(2-0.5)}{2 \cdot 2}=0.5625 \mathrm{~m}
$$

We have

$$
\begin{gathered}
V=\frac{1}{3} \cdot \pi \cdot r^{2} \cdot h=\frac{1}{3} \cdot 3.14 \cdot 0.5625^{2} \cdot 1.5=0.497 \mathrm{~m}^{3} \\
m g=\rho_{\text {water }} \cdot g \cdot V \rightarrow \rho \cdot V_{\text {total }} \cdot g=\rho_{\text {water }} \cdot g \cdot V \rightarrow \rho \cdot V_{\text {total }}=\rho_{\text {water }} \cdot V \rightarrow \rho=\frac{\rho_{\text {water }} \cdot V}{V_{\text {total }}},
\end{gathered}
$$

where $V_{\text {total }}$ is the full volume of the cone

$$
\begin{gathered}
V_{\text {total }}=\frac{1}{3} \cdot \pi \cdot R^{2} \cdot H=\frac{1}{3} \cdot \pi \cdot\left(\frac{D}{2}\right)^{2} \cdot H=\frac{1}{3} \cdot 3.14 \cdot\left(\frac{1.5}{2}\right)^{2} \cdot 2=1.178 \mathrm{~m}^{3} . \\
\rho=\frac{\rho_{\text {water }} \cdot V}{V_{\text {total }}}=\frac{1000 \cdot 0.497}{1.178} \approx 422 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} .
\end{gathered}
$$

Answer. $\rho=422 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$.
Answer provided by https://www.AssignmentExpert.com

