Answer on Question \#83663 Physics / Classical Mechanics

An object of mass $m=1 \mathrm{~kg}$ travels to east with a uniform velocity $v_{0 x}=2 \frac{\mathrm{~m}}{\mathrm{~s}}$. A force of $F_{y}=2 \mathrm{~N}$ is applied on it along north direction. What's the displacement of object after $t=2$ seconds?

Solution:

Let the x -axis is directed toward to the east, and y -axis is directed toward to the north. The Newton's second law gives

$$
\begin{gathered}
a_{x}=\frac{F_{x}}{m}=0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
a_{y}=\frac{F_{y}}{m}=\frac{2 \mathrm{~N}}{1 \mathrm{~kg}}=2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{gathered}
$$

So, components of the displacement

$$
\begin{aligned}
& s_{x}=v_{0 x} t+\frac{a_{x} t^{2}}{2}=2 \frac{\mathrm{~m}}{\mathrm{~s}} \times 2 \mathrm{~s}+\frac{0 \times(2 \mathrm{~s})^{2}}{2}=4 \mathrm{~m} \\
& s_{y}=v_{0 y} t+\frac{a_{y} t^{2}}{2}=0 \times 2 \mathrm{~s}+\frac{2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times(2 \mathrm{~s})^{2}}{2}=4 \mathrm{~m}
\end{aligned}
$$

The magnitude of displacement

$$
s=\sqrt{s_{x}^{2}+s_{y}^{2}}=\sqrt{4^{2}+4^{2}}=4 \sqrt{2} \mathrm{~m}=5.7 \mathrm{~m}
$$

The direction of the displacement

$$
\theta=\tan ^{-1} \frac{s_{y}}{s_{x}}=\tan ^{-1} \frac{4}{4}=\tan ^{-1} 1=45^{\circ} \text { north of east }
$$

Answer: 5.7 m, 45° north of east
Answer provided by https://www.AssignmentExpert.com

