Answer on Question \# 83382, Physics / Mechanics | Relativity

Question 1. A $m=1 \mathrm{~kg}$ object slides to the right on a surface with kinetic friction coefficient of $\mu=0.25$. The initial speed of the object when it makes contact with a light spring (k spring $=50 \mathrm{~N} / \mathrm{m}$) is $v_{0}=3 \mathrm{~m} / \mathrm{s}$. The object comes to rest after the spring has been compressed a distance d. The object is then forced toward the left by the spring and continues to move in that direction beyond the spring's un-stretched position. Finally, the object comes to rest a distance D to the left of the un-stretched spring. Find d, D, and the speed v at the un-stretched position when the object is moving to the left.

Solution. The kinetic energy of the object was spent on friction and compressing the spring. Friction did the work, $\mu m g d$ and the spring (elastic force) did the work $k d^{2} / 2$. Hence,

$$
\begin{gathered}
m v_{0}^{2} / 2=\mu m g d+k d^{2} / 2 \Rightarrow d^{2}+2 \mu m g d / k-m v_{0}^{2}=0 \Rightarrow d=\frac{1}{2}\left(-\mu m g / k \pm \sqrt{(\mu m g / k)^{2}+m v_{0}^{2} / k}\right) \\
d>0 \Rightarrow d=-0.25 \cdot 9.8 / 50 \pm \sqrt{(0.25 \cdot 9.8 / 50)^{2}+3^{2} / 50} \approx 0.378 m
\end{gathered}
$$

In the moment, when the spring at the un-stretched position, the spring did work which was spent on friction and the kinetic energy of the object. Then,

$$
\begin{gathered}
k d^{2} / 2=\mu m g d+m v^{2} / 2 \Rightarrow v^{2}=\left(k d^{2}+2 \mu m g d\right) / m \\
v>0 \Rightarrow v=\sqrt{\left(k d^{2}-2 \mu m g d\right) / m}=\sqrt{\left(50 \cdot 0.378^{2}-2 \cdot 0.25 \cdot 9.8 \cdot 0.378\right)} \approx 2.3 \mathrm{~ms}^{-1}
\end{gathered}
$$

When the object stopped, the kinetic energy was spent on friction. So,

$$
m v^{2} / 2=\mu m g D \Rightarrow D=m v^{2} /(2 \mu m g)=2.3^{2} /(2 \cdot 0.25 \cdot 9.8) \approx 1.08 m
$$

