For the period of oscillation, T depends on the mass M of the bob per unit of length of a rubber L, cross-sectional area, A of the bob and the young modulus, E. Use the method of dimension to derive the relationship of connecting them.

Solution

First, determine the units:

$$
\begin{aligned}
T & =[\mathrm{s}], \\
M & =[\mathrm{kg}], \\
L & =[\mathrm{m}], \\
A & =\left[\mathrm{m}^{2}\right], \\
E & =\left[\frac{\mathrm{kg}}{\mathrm{~m} \cdot \mathrm{~s}^{2}}\right] .
\end{aligned}
$$

Maybe we will need the acceleration due to gravity $g=\left[\mathrm{m} / \mathrm{s}^{2}\right]$ too. Let's combine! Our goal is to get seconds using all these units above. Let's suppose that

$$
T=M^{a} \cdot L^{b} \cdot A^{c} \cdot E^{d}
$$

Write their

$$
\begin{gathered}
{[\mathrm{s}]^{1}[\mathrm{~kg}]^{0}[\mathrm{~m}]^{0} \leftrightarrow([\mathrm{~kg}])^{a} \cdot([\mathrm{~m}])^{b} \cdot\left([\mathrm{~m}]^{2}\right)^{c} \cdot\left([\mathrm{~kg}][\mathrm{m}]^{-1}[s]^{-2}\right)^{d}} \\
{[\mathrm{~s}]^{1}[\mathrm{~kg}]^{0}[\mathrm{~m}]^{0} \leftrightarrow[\mathrm{~kg}]^{a+d} \cdot[\mathrm{~m}]^{b+2 c-d} \cdot[\mathrm{~s}]^{-2 \mathrm{~d}}}
\end{gathered}
$$

Now equal corresponding powers from the left part of the equation above and powers from the right:

$$
\begin{gathered}
{[\mathrm{s}]: 1=-2 d \quad \Rightarrow \quad d=-\frac{1}{2}} \\
{[\mathrm{~kg}]: 0=a+d \quad \Rightarrow \quad a=-d=\frac{1}{2}} \\
{[\mathrm{~m}]: 0=b+2 c-d \quad \Rightarrow \quad b=\frac{1}{2}, c=-\frac{1}{2}}
\end{gathered}
$$

Thus

$$
T=M^{a} \cdot L^{b} \cdot A^{c} \cdot E^{d}=M^{1 / 2} \cdot L^{1 / 2} \cdot A^{-1 / 2} \cdot E^{-1 / 2}
$$

At this stage it's easy to see that

$$
T=\sqrt{\frac{M L}{A E}}
$$

Answer $T=\sqrt{\frac{M L}{A E}}$
Answer provided by https://www.AssignmentExpert.com

