Answer on question \#83171, Physics Electric Circuits

two charges $-q$ and $-3 q$ are separated by a distance I. these two charges are free to move but do not because there is a third charge nearby. what must be the charge and placement of the charge for the first two to be in equilibrium?

Solution

Suppose, that between the negative charges q and 3 q is the positive charge q_{x} and the distance from the charge q to the charge q_{x} is l_{1}, and the distance from the charge 3 q to the charge q_{x} is l_{2}.

Using Coulomb's law, we draw up and solve a system of equations:

$$
\left\{\begin{array}{l}
k \frac{[-q] q_{x}}{l_{1}^{2}}=k \frac{[-q][-3 q]}{\left(l_{1}+l_{2}\right)^{2}} \\
k \frac{[-3 q] q_{x}}{l_{2}^{2}}=k \frac{[-q][-3 q]}{\left(l_{1}+l_{2}\right)^{2}}
\end{array}\right\}
$$

Hence $l_{2}=\sqrt{3} \cdot l_{1} ; q_{x}=0.4 q$
Answer: $l_{2}=\sqrt{3} \cdot l_{1} ; q_{x}=0.4 q$
Answer provided by https://www.AssignmentExpert.com

