Answer on Question \#82946, Physics / Electromagnetism

Question:

Imagine sitting with two friends around a table, where all three of you have different masses.
Calculate the magnitude and direction of the gravitational field in the centre of the table due to your three masses

Solution:

The intensity of the gravitational field equals to $\bar{I}=G \frac{m}{r^{3}} \bar{r}$ where m is a mass producing the
field, r is the proper radius-vector, directed from the center to m. Respectively the net intensity is $\bar{I}_{n}=G \sum_{1}^{3} \frac{m_{i}}{r_{i}^{3}} \bar{r}_{i}$, the magnitude of the gravitational field in the centre M is $M=\bmod \left(\bar{I}_{n}\right)$
and the direction corresponds to \bar{I}_{n} direction.

The answer:
The net intensity is $\bar{I}_{n}=G \sum_{1}^{3} \frac{m_{i}}{r_{i}^{3}} \bar{r}_{i}$, the magnitude of the gravitational field in the centre M is $M=\bmod \left(\bar{I}_{n}\right)$ and the direction corresponds to \bar{I}_{n} direction.

