Answer on Question #82946, Physics / Electromagnetism

Question:

Imagine sitting with two friends around a table, where all three of you have different masses.

Calculate the magnitude and direction of the gravitational field in the centre of the table due to your three masses

Solution:

The intensity of the gravitational field equals to $\overline{I} = G \frac{m}{r^3} \overline{r}$ where m is a mass producing the field, \overline{r} is the proper radius-vector, directed from the center to m. Respectively the net intensity is $\overline{I}_n = G \sum_{1}^{3} \frac{m_i}{r_i^3} \overline{r_i}$, the magnitude of the gravitational field in the centre M is $M = \text{mod}(\overline{I}_n)$ and the direction corresponds to \overline{I}_n direction.

The answer:

The net intensity is $\overline{I}_n = G \sum_{1}^{3} \frac{m_i}{r_i^3} \overline{r_i}$, the magnitude of the gravitational field in the centre M is

 $M = \text{mod}(\overline{I}_n)$ and the direction corresponds to \overline{I}_n direction.

Answer provided by https://www.AssignmentExpert.com