Answer on Question \#82930, Physics / Molecular Physics | Thermodynamics

Question. The volume of 1 kg of water at $100^{\circ} \mathrm{C}$ is $10^{-3} \mathrm{~m}^{3}$ and the volume of 1 kg of steam at normal pressure is $1.671 \mathrm{~m}^{3}$ latent heat of steam is $2.3 \cdot 10^{6}$ joule per kg and the normal pressure is $10^{5} \mathrm{~N} / \mathrm{m}^{2} \mathrm{How}$ much work will be done in converting 5 kg of water at hundred degree Celsius into steam at the same pressure and temperature.

Solution.

The work done is equal

$$
W=\int d W=\int_{V_{i}}^{V_{f}} p d V=p\left(V_{f}-V_{i}\right)=10^{5} \cdot\left(5 \cdot 1.671-5 \cdot 10^{-3}\right)=8.35 \cdot 10^{5} \mathrm{~J}
$$

Answer. $W=8.35 \cdot 10^{5} \mathrm{~J}$.
Answer provided by https://www.AssignmentExpert.com

