A mild steel ring having a cross sectional area of $500 \mathrm{~mm}^{2}$ and a mean circumference of 400 mm has a coil of 200 turns wound uniformly around it. Calculate
a. The reluctance of the ring.

Solution.

The reluctance:

$$
R=\frac{L}{A \mu \mu_{0}}
$$

where

$$
\begin{gathered}
L=400 \mathrm{~mm}=0.4 \mathrm{~m} \\
A=500 \mathrm{~mm}^{2}=5 \cdot 10^{-4} \mathrm{~m}^{2} \\
\mu_{0}=4 \pi \cdot 10^{-7} \mathrm{~N} / A^{2} \\
\mu=1500 \text { for mild steel }
\end{gathered}
$$

Answer:

$$
R=\frac{0.4}{5 \cdot 10^{-4} \cdot 4 \pi \cdot 10^{-7} \cdot 1500}=42.44 \mathrm{H}^{-1}
$$

b. The current required to produce a flux of $800 \mu W b$ in the ring.

Solution.

The current:

$$
I=\frac{\Phi}{A \mu_{0} n}
$$

where

$$
\Phi=800 \mu \mathrm{~Wb}=8 \cdot 10^{-4} \mathrm{~Wb}
$$

Answer to Question \#82732, Physics / Electromagnetism

$$
n=200 \text { turns }
$$

Answer:

$$
I=\frac{8 \cdot 10^{-4}}{5 \cdot 10^{-4} \cdot 4 \pi \cdot 10^{-7} \cdot 200}=6.366 \cdot 10^{3} \mathrm{~A}
$$

Answer provided by https://www.AssignmentExpert.com

