Answer on Question \#82595, Physics / Mechanics | Relativity

Question:

A particle is fired with a constant velocity of $10^{*} 10^{\wedge} 5 \mathrm{~m} / \mathrm{s}$ into a region where it is subjected to an acceleration of $2 * 10^{\wedge} 12 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ directed opposite to the initial velocity. how far does the particle travel before coming to rest?

Solution:

The time of movement equals to $\tau=\frac{v}{a}=\frac{10^{6}}{2 \cdot 10^{12}}=0.5 \cdot 10^{-6}(\mathrm{~s})$, while the displacement $s=v \tau-0.5 a \tau^{2}=0.5 a \tau^{2}=10^{12} \cdot 0.25 \cdot 10^{-12}=0.25(\mathrm{~m})$.

The answer:
The displacement s equals to 0.25 m .
Answer provided by https://www.AssignmentExpert.com

