Answer on Question #82538, Physics / Electromagnetism

Question:

What is the electrostatic force on all the electrons in one of your eyes due to all of the electrons in your other eye? Why don't you notice this force?

Solution:

Let's assume that the eye volume equals to 3 cm³ and it consists mainly from water; then the number of molecules is $n = \frac{3}{18} 6 \cdot 10^{23} = 10^{23}$ and the proper electrons charge equals to $q = 10^{23} \cdot 18 \cdot 1.6 \cdot 10^{-19} = 0.29 \cdot 10^{6}$ (K), and according to Coulomb's law the force is $f = \frac{9 \cdot 10^{9} \cdot 0.29^{2} \cdot 10^{12}}{25 \cdot 10^{-4}} = 3 \cdot 10^{23}$ (N).

We don't feel this force because besides electrons there are positive protons and the repulsion force is compensated by the attraction force.

The answer:

$$f = 3 \cdot 10^{23} N$$

We don't feel this force because besides electrons there are positive protons and the repulsion force is compensated by the attraction force.

Answer provided by https://www.AssignmentExpert.com