Find the expression for the volume of liquid passing per second, V, through a pipe when the flow is steady. Assume the V proportional to (i) the coefficient of viscosity η of the liquid (ii) the radius r of the pipe and (iii) the pressure gradient, (ρ / l), causing the flow, where ρ is the pressure difference between the ends of the pipe and I is the length.

Solution

According to what is given, take a small piece of a tube of length $\mathrm{d} x$. On the sides of the tube the force $\mathrm{d} F$ acts:

$$
\mathrm{d} F=\eta \cdot 2 \pi r \cdot l \cdot \frac{\mathrm{~d} v}{\mathrm{~d} r} \cdot \mathrm{~d} x
$$

On the sides of the tube the force f acts:

$$
\mathrm{d} f=\pi r^{2}\left(p_{1}-p_{2}\right)=\pi r^{2} \cdot \frac{\mathrm{~d} p}{\mathrm{~d} x} \cdot \mathrm{~d} x
$$

If the flow is steady, the sum of these forces is 0 (remember that $\mathrm{d} p=\rho$):

$$
2 \eta l \cdot \frac{\mathrm{~d} v}{\mathrm{~d} r}=r \cdot \rho
$$

Since it's steady, $v=$ const, $d v / d r=$ const, $\Rightarrow d p / d x=$ const.
Thus,

$$
\frac{\mathrm{d} v}{\mathrm{~d} r}=\frac{\rho}{2 \eta l} r
$$

Integrate it:

$$
v=\frac{\rho}{4 \eta l} r^{2}
$$

Per every 1 second volume $d V$ passes through the pipe's cross-section of inner r and outer $r+d r$ radii:

$$
\begin{gathered}
\mathrm{d} V=2 \pi r \mathrm{~d} r \cdot v \\
V=\pi \frac{\rho}{2 \eta l} \int_{0}^{r} r^{2} \cdot r \cdot \mathrm{~d} r=\pi \frac{\rho}{2 \eta l} \cdot \frac{r^{4}}{4}=\frac{\pi}{8} \cdot \frac{\rho r^{4}}{\eta l}
\end{gathered}
$$

This is Poiseuille's law. However he got the expression by dimensional analysis.

Answer:

$V=\frac{\pi}{8} \cdot \frac{\rho r^{4}}{\eta l}$.
Answer provided by https://www.AssignmentExpert.com

