Answer on Question\#82229-Physics - Mechanics | Relativity

The speed of a car increases uniformly from 25 meter per second to 70 meter in 15 seconds. calculate the average speed. Options

A 40.5

B 37.5

C 47.5

D 50.5

Solution:

Since the speed of the car increases uniformly, its acceleration a is constant and can be calculated by the following formula

$$
a=\frac{v_{f}-v_{i}}{\Delta t}
$$

where v_{f} - is the final speed of the car, v_{i} - its initial speed and $\Delta t-$ is the time of acceleration. It is given that $v_{f}=70 \frac{\mathrm{~m}}{\mathrm{~s}}, v_{i}=25 \frac{\mathrm{~m}}{\mathrm{~s}}$ and $\Delta t=15 \mathrm{~s}$, thus we obtain

$$
a=\frac{70 \frac{\mathrm{~m}}{\mathrm{~s}}-25 \frac{\mathrm{~m}}{\mathrm{~s}}}{15 \mathrm{~s}}=3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Then the displacement of the $\operatorname{car} x(t)$ is given by

$$
x(t)=v_{i} t+\frac{a t^{2}}{2}
$$

The average speed $v_{\text {avg }}$ is defined as the ratio of traveled path to the time of travel. Therefore we get

$$
v_{\text {avg }}=\frac{x(15 \mathrm{~s})-x(0 \mathrm{~s})}{\Delta t}=\frac{25 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 15 \mathrm{~s}+\frac{3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(15 \mathrm{~s})^{2}}{2}}{15 \mathrm{~s}}=47.5 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: $47.5 \frac{\mathrm{~m}}{\mathrm{~s}}$.

