Answer on Question \#82132-Physics - Atomic and Nuclear Physics

Question: You want to find the half-life of an element. At 12 AM on the first day you find that the element has decayed 50000 times after 1 min. At 12 AM on the second day you find that the element has decayed 45000 times in 1 minute. What is the half-life of the element?

Answer:

Solution of the problem is based on the utilization of the law of radioactive decay which states

$$
\begin{equation*}
N(t)=N_{0} 2^{-\frac{t}{T}}, \tag{1}
\end{equation*}
$$

where N_{0} is the number of the initially existing nuclei, $N(t)$ is the number of the not decayed nuclei by the time t, T is the half-life period.

Hence, the number of already decayed nuclei can be calculated as:

$$
\begin{equation*}
N_{d e c}(t)=N_{0}-N(t)=N_{0}\left(1-2^{-\frac{t}{T}}\right) . \tag{2}
\end{equation*}
$$

For the first observation we have:

$$
\begin{gather*}
t_{1}=\Delta t=1 \min , \quad \Delta N_{1}=50000, \tag{3}\\
\Delta N_{1}=N_{0}\left(1-2^{-\frac{\Delta t}{T}}\right) \tag{4}
\end{gather*}
$$

For the second observation we have:

$$
\begin{gather*}
t_{2}=t_{0}+\Delta t, \quad t_{0}=24 h, \quad \Delta N_{2}=45000, \tag{5}\\
\Delta N_{2}=N\left(t_{0}\right)\left(1-2^{-\frac{\Delta t}{T}}\right)=N_{0} 2^{-\frac{t}{T}}\left(1-2^{-\frac{\Delta t}{T}}\right), \tag{6}
\end{gather*}
$$

where we utilize $N\left(t_{0}\right)$ as the number of still existing nuclei after 24 hours.
Dividing (4) by (6), we obtain:

$$
\begin{equation*}
\frac{\Delta N_{1}}{\Delta N_{2}}=\frac{N_{0}\left(1-2^{-\frac{\Delta t}{T}}\right)}{N_{0} 2^{-\frac{t}{T}}\left(1-2^{-\frac{\Delta t}{T}}\right)}=2^{\frac{t}{T}} . \tag{7}
\end{equation*}
$$

By solving (7) in respect to T, we obtain:

$$
\begin{equation*}
T=\frac{t_{0}}{\log _{2} \frac{\Delta N_{1}}{\Delta N_{2}}}=\frac{24 h}{\log _{2} \frac{50000}{45000}} \approx 158 h \tag{8}
\end{equation*}
$$

So, the half-life of the element is around 158 hours.
Answer provided by https://www.AssignmentExpert.com

