Answer to Question \#82041, Physics / Electromagnetism

A cube of sides length L contains a flat square plate also with sides of length L. The cube and square are in a Cartesian coordinate system. The square is placed at $z=L / 2$ and extends from $x=0$ to $x=L$ and from $y=0$ to $y=L$. The cube is placed such that it extends from $x=$ 0 to $x=L, y=0$ to $y=L$ and $z=0$ to $z=L$. The flat square plate has a surface charge density that is given by $-3 x y(C / m 2)$. Calculate the total electric flux passing through the sides of the cube.

Solution.

By Gauss's law, the total electric flux passing through the sides of the cube:

$$
\oint E d S=\frac{q}{\varepsilon_{0}}
$$

where q is the charge inside the cube.
So:

$$
q=\int_{0}^{L} d x \int_{0}^{L}(-3 x y) d y=-\left.3 \int_{0}^{L} \frac{x y^{2}}{2}\right|_{0} ^{L} d x=-\left.\frac{3 L^{2}}{2} \cdot \frac{x^{2}}{2}\right|_{0} ^{L}=-\frac{3 L^{4}}{4}
$$

Answer:

$$
\oint E d S=-\frac{3 L^{4}}{4 \varepsilon_{0}}
$$

Answer provided by https://www.AssignmentExpert.com

