## Answer on Question 82036, Physics, Astronomy, Astrophysics

## Question:

From home plate to the center field wall at a ball park is 130 meters. When a batter hits a long drive the ball leaves his bat 1 meter off the ground with a velocity of 40 meters per second at 28 degrees above the horizontal. The center field wall is 2.6 meters high. Does he hit a home run?

## Solution:

Let's, consider the motion of the ball in two dimensions:

$$
\begin{gathered}
x=v_{0 x} t=v_{0} \cos \theta t \\
y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}=y_{0}+v_{0} \sin \theta t-\frac{1}{2} g t^{2}
\end{gathered}
$$

here, $x=130 \mathrm{~m}$ is the horizontal distance traveled by the ball to the center field wall, $v_{0}=40 \mathrm{~m} / \mathrm{s}$ is the initial velocity of the ball, $\theta=28^{\circ}$ is the launch angle, $y$ is the height of the ball, $y_{0}=1.0 \mathrm{~m}$ is the initial height of the ball above the ground, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity and $t$ is the time.

Let's find the height of the ball as a function of horizontal distance by eliminating the time. Let's express the time from the equation (1) and substitute it into the equation (2):

$$
\begin{gathered}
t=\frac{x}{v_{0} \cos \theta}, \\
y=y_{0}+v_{0} \sin \theta \cdot \frac{x}{v_{0} \cos \theta}-\frac{1}{2} g\left(\frac{x}{v_{0} \cos \theta}\right)^{2}, \\
y=y_{0}+x \tan \theta-\frac{1}{2} g\left(\frac{x}{V_{0} \cos \theta}\right)^{2}= \\
=1.0 \mathrm{~m}+130 \mathrm{~m} \cdot \tan 28^{\circ}-\frac{1}{2} \cdot 9.8 \frac{\mathrm{~m}}{s^{2}} \cdot\left(\frac{130 \mathrm{~m}}{40 \frac{m}{s} \cdot \cos 28^{\circ}}\right)^{2}= \\
=1.0 \mathrm{~m}+2.73 \mathrm{~m}=3.73 \mathrm{~m}
\end{gathered}
$$

Since, the height of the ball is greater than the height of the center field wall, the ball will clear this wall and the batter will hit a home run.

## Answer:

$$
y=3.73 \mathrm{~m} \text {, the batter will hit the home run. }
$$

Answer provided by https://www.AssignmentExpert.com

