Sam, whose mass is 75 kg takes off down a 50 m high, 10° slope on his jet powered skis. The skis have a thrust of 200 N . Sam's speed at the bottom of the slope is $40 \mathrm{~m} / \mathrm{s}$. What is the skis coeffecient of kinetic friction with the ice?

Solution

Calculate Sam's acceleration:

$$
a=\frac{v^{2}}{2 s}=\frac{v^{2}}{2 \cdot \frac{h}{\sin \alpha}}=\frac{v^{2} \sin \alpha}{2 h}
$$

According to Newton's second law:

$$
m a=F-f+m g \sin \alpha,
$$

where

$$
f=\mu N=\mu m g \cos \alpha .
$$

Thus,

$$
\mu=\frac{F+m\left(g \sin \alpha-\frac{v^{2} \sin \alpha}{2 h}\right)}{m g \cos \alpha}=\frac{200+75\left(9.8 \sin 10^{\circ}-\frac{40^{2} \cdot \sin 10^{\circ}}{2 \cdot 50}\right.}{75 \cdot 9.8 \cdot \cos 10^{\circ}}=0.165 .
$$

Answer

$\mu=0.165$.
Answer provided by https://www.AssignmentExpert.com

