A ring takes time $t 1$ in slipping down an inclined plane of length L, whereas it takes time t 2 in rolling down the same plane. The ratio of t 1 and t 2 is

Solution

In this problem we will use:

- r - radius of the ring;
- m - mass of the ring;
- I - moment of inertia of the ring;
- μ - coefficient of kinetic friction;
- α - angle of the slope;
- $\varepsilon-$ angular acceleration while the ring is rolling;
- f - force of friction.

When the ring is slipping its time is

$$
t_{1}=\sqrt{\frac{2 L}{a_{1}}}
$$

where a_{1} - its acceleration. Determine it using Newton's second law:

$$
\begin{aligned}
m a_{1} & =m g \sin \alpha-\mu m g \cos \alpha, \\
a_{1} & =g(\sin \alpha-\mu \cos \alpha), \\
t_{1} & =\sqrt{\frac{2 L}{g(\sin \alpha-\mu \cos \alpha)}} .
\end{aligned}
$$

Now calculate the time for the second situation:

$$
t_{2}=\sqrt{\frac{2 L}{a_{2}}}
$$

where a_{2} - acceleration of the rolling ring. Determine it from the equality of torques provided by the force of friction and by the moment of inertia:

$$
\begin{gathered}
f \cdot r=I \cdot \varepsilon, \\
\varepsilon=\frac{f r}{I} .
\end{gathered}
$$

On the other hand,

$$
\varepsilon=\frac{a_{2}}{r} \Rightarrow \frac{f r}{I}=\frac{a_{2}}{r} .
$$

According to Newton's second law in this case,

$$
m a_{2}=m g \sin \alpha-f
$$

Express f from the equation right above and obtain a_{2} :

$$
a_{2}=\frac{r^{2} m g \sin \alpha}{I+m r^{2}}
$$

The moment of inertia for rings is

$$
I=m r^{2}
$$

so

$$
a_{2}=\frac{g \sin \alpha}{2}
$$

and

$$
t_{2}=\sqrt{\frac{4 L}{g \sin \alpha}}
$$

Finally,

$$
\frac{t_{1}}{t_{2}}=\sqrt{\frac{2 L}{g(\sin \alpha-\mu \cos \alpha)} \cdot \frac{g \sin \alpha}{4 L}}=\sqrt{\frac{\sin \alpha}{2(\sin \alpha-\mu \cos \alpha)}} .
$$

If $\mu=0$,

$$
\frac{t_{1}}{t_{2}}=\sqrt{\frac{1}{2}}
$$

Answer
$\frac{t_{1}}{t_{2}}=\sqrt{\frac{\sin \alpha}{2(\sin \alpha-\mu \cos \alpha)}}$.

Answer provided by https://www.AssignmentExpert.com

