

Answer on Question #81738, Physics / Electromagnetism

Question:

Let the whole xy planet ($z = 0$) have charge density $\sigma_1 = 10 \text{ nC} / \text{m}^2$ and the entire xz plane ($y = 0$) have charge density $\sigma_2 = -10 \text{ nC} / \text{m}^2$.

Find the electric field (vector) in the points

- a) $(x, y, z) = (1, 1, 1) \text{ m}$
- b) $(x, y, z) = (-1, -1, -1) \text{ m}$

Solution:

According to Gauss's theorem for a plane $\overline{E}_1 = \bar{k}4\pi K\sigma_1 = \bar{k}4 \cdot 3.14 \cdot 90 = \bar{k}1.13(\frac{kV}{m})$ and

$\overline{E}_2 = \bar{j}4\pi k\sigma_2 = -\bar{j}1.13(\frac{kV}{m})$, therefore the net electric field vector at any point equals to

$$\overline{E} = 1.13(\bar{k} - \bar{j})\frac{kV}{m}.$$

The answer:

The net electric field vector at any point equals to $\overline{E} = 1.13(\bar{k} - \bar{j})\frac{kV}{m}$.

Answer provided by <https://www.AssignmentExpert.com>