Question:

Let the whole xy planet $(\mathrm{z}=0)$ have charge density $\sigma 1=10 \mathrm{nC} / \mathrm{m} 2$ and the entire xz plane $(\mathrm{y}=0)$ have charge density $\sigma 2=-10 \mathrm{nC} / \mathrm{m} 2$.

Find the electric field (vector) in the points
a) $(x, y, z)=(1,1,1) m$
b) $(x, y, z)=(-1,-1,-1) m$

Solution:

According to Gauss's theorem for a plane $\overline{E_{1}}=\bar{k} 4 \pi K \sigma_{1}=\bar{k} 4 \cdot 3.14 \cdot 90=\bar{k} 1.13\left(\frac{\mathrm{kV}}{\mathrm{m}}\right)$ and $\overline{E_{2}}=\bar{j} 4 \pi k \sigma_{2}=-\bar{j} 1.13\left(\frac{k V}{m}\right)$, therefore the net electric field vector at any point equals to $\bar{E}=1.13(\bar{k}-\bar{j}) \frac{k V}{m}$.

The answer:
The net electric field vector at any point equals to $\bar{E}=1.13(\bar{k}-\bar{j}) \frac{k V}{m}$.

