Answer on Question #81738, Physics / Electromagnetism

Question:

Let the whole xy planet (z = 0) have charge density $\sigma 1 = 10$ nC / m2 and the entire xz plane (y = 0) have charge density $\sigma 2 = -10$ nC / m2.

Find the electric field (vector) in the points

a)
$$(x, y, z) = (1,1,1) m$$

b)
$$(x, y, z) = (-1, -1, -1) m$$

Solution:

According to Gauss's theorem for a plane $\overline{E_1} = \overline{k} 4\pi K \sigma_1 = \overline{k} 4 \cdot 3.14 \cdot 90 = \overline{k} 1.13 (\frac{kV}{m})$ and

 $\overline{E_2} = \overline{j} 4\pi k \sigma_2 = -\overline{j} 1.13 \left(\frac{kV}{m}\right)$, therefore the net electric field vector at any point equals to

$$\overline{E} = 1.13(\overline{k} - \overline{j})\frac{kV}{m}$$
.

The answer:

The net electric field vector at any point equals to $\overline{E} = 1.13(\overline{k} - \overline{j})\frac{kV}{m}$.

Answer provided by https://www.AssignmentExpert.com