Answer on Question \#81607 - Physics - Electric Circuits

6. Outline the steps taken with a help of an example how to reduce a circuit connected to points A-B can be reduced to a Thevenin'sand Norton's sources

Solution

Example of applying Thevenin's theorem

Determine the Thevenin equivalent circuit with respect to terminals $A B$ of the circuit shown in Figure 1. Determine the magnitude of the current flowing in a $3.75+j 11 \Omega$ impedance connected across terminals $A B$.

Figure 11

1. Short-circuit the voltage source and determine the equivalent impedance:

$$
Z_{T h}=\frac{(4+j 3)(-j 3)}{4+j 3-j 3}=3.75 \angle-53.13^{\circ} \Omega
$$

2. Calculate the supply current i_{1} :

$$
i_{1}=\frac{V}{-j 3+4+j 3}=6 \mathrm{~A}
$$

3. Find the equivalent voltage across $A B$:

$$
V_{T h}=i_{1}(4+j 3)=30 \angle 36.87^{\circ} \mathrm{V}
$$

4. Calculate the current flowing in a $3.75+\mathrm{j} 11 \Omega$ impedance connected across terminals AB :

$$
I=\frac{V_{T h}}{Z_{T h}+3.75+j 11}=\frac{30 \angle 36.87^{\circ} .}{3.75 \angle-53.13^{\circ}+11.62 \angle 71.18^{\circ}}=3 \angle-16.26^{\circ} \mathrm{A} .
$$

Solution

Example of applying Norton's theorem

Figure 2 shows a 50Ω load being fed from two voltage sources via their associated reactances.

Figure 2
Determine the current i flowing in the load by transforming the two voltage sources and their associated reactances into current sources (and thus form a pair of Norton generators).

1. Short-circuit the load and calculate the Norton current provided by v_{1} only:

$$
J_{1}=\frac{V_{1}}{X_{1}}=\frac{415 \angle 90^{\circ}}{4 \angle 90^{\circ}}=103.75 \angle 0^{\circ} \mathrm{A}
$$

2. Short-circuit the load and calculate the current created by v_{2} only:

$$
J_{2}=\frac{V_{2}}{X_{2}}=\frac{415 \angle 0^{\circ}}{6 \angle 90^{\circ}}=69.17 \angle-90^{\circ} \mathrm{A}
$$

Since two Norton generators are needed, the Norton reactances from the condition $Z_{N}=X_{1} X_{2} /\left(X_{1}+X_{2}\right)$ are:

$$
\begin{aligned}
& X_{1}=4 \cdot e^{j 90^{\circ}}=4 \angle 90^{\circ} \Omega \\
& X_{2}=6 \cdot e^{j 90^{\circ}}=6 \angle 90^{\circ} \Omega
\end{aligned}
$$

3. Now calculate the current i in the load:

$$
i=\frac{\frac{\left(J_{1}+J_{2}\right) \cdot Z_{1} Z_{2}}{\left(Z_{1}+Z_{2}\right)}}{\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}+Z}=\frac{\frac{\left(103.75+69.17 \angle-90^{\circ}\right) \cdot 4 \angle 90^{\circ} \cdot 6 \angle 90^{\circ}}{\left(4 \angle 90^{\circ}+6 \angle 90^{\circ}\right)}}{\frac{4 \angle 90^{\circ} \cdot 6 \angle 90^{\circ}}{4 \angle 90^{\circ}+6 \angle 90^{\circ}}+50 \angle 45.6^{\circ}}=5.78 \angle 8.85^{\circ} \mathrm{A}
$$

Answer provided by https://www.AssignmentExpert.com

