Question \#81525, Physics / Molecular Physics | Thermodynamics

3. n moles of an ideal gas undergo an isobaric process $1->2$ and then the isochoric process $2->3$ shown in Fig. 1 in such was that the gas performs work A. The ratio of P2 and P3 is known: P2/P3=k. The temperature T1 in the state 1 equals to the temperature T3 In state 3. Calculate temperature T3.

Solution

1) $W=p_{2}\left(V_{2}-V_{1}\right)=A$
2) $n R T_{1}=p_{1} V_{1}=p_{2} V_{1}$
3) $\frac{p_{3}}{p_{2}}=\frac{T_{3}}{T_{2}}=\frac{1}{k} \rightarrow T_{3}=\frac{T_{2}}{k}$
4) $n R T_{2}=p_{2} V_{2}$

Thus,

$$
\begin{gathered}
A=n R\left(T_{2}-T_{1}\right) \\
T_{2}=T_{1}+\frac{A}{n R}
\end{gathered}
$$

So,

$$
T_{3}=\frac{1}{k}\left(T_{1}+\frac{A}{n R}\right)
$$

4. A monoatomic gas takes up a volume of $\mathrm{V}=4 \mathrm{~m} 3$ and is at a pressure of $8 \times 105 \mathrm{~Pa}$. The gas undergoes an isothermal expansion reaching the final pressure of 1 atm. Calculate a) the work done to the gas in such a process b) the amount of heat absorbed by the gas c) change in the internal energy of the gas.

Solution

a) the work done to the gas:

$$
\begin{gathered}
W=n R T \ln \frac{V_{2}}{V_{1}} \\
T=\mathrm{const} \rightarrow p_{1} V_{1}=p_{2} V_{2} \rightarrow \frac{V_{2}}{V_{1}}=\frac{p_{1}}{p_{2}} \\
n R T=p V=p_{1} V_{1}
\end{gathered}
$$

Thus,

$$
W=p_{1} V_{1} \ln \frac{p_{1}}{p_{2}}=(800000)(4) \ln \frac{8}{1.01325}=6.6 \mathrm{MJ} .
$$

b) the amount of heat absorbed by the gas:

$$
Q=W=6.6 \mathrm{MJ} .
$$

c) change in the internal energy of the gas:

$$
\Delta U=Q-W=0 J .
$$

Answer provided by https://www.AssignmentExpert.com

