Question:

A straight line segment of length L (see Figure below) carries a uniform line charge λ. Find the electric field a distance z above one end of the straight line. Indicate the direction of the electric field vector. Check that your formula is consistent with what you would expect for the case z L.

Solution:

In the point P a part of L with the length dx gives $d E=\frac{k q}{(z+L-x)^{2}}=\frac{k \lambda d x}{(z+L-x)^{2}}$, therefore according to superposition principle the electric field vector modulus
$E=\int_{0}^{L} \frac{k \lambda d x}{(L+z-x)^{2}}=\frac{k L \lambda}{(z+L) z}$.
In case of $z \square L E=\frac{k q}{z^{2}}$, where $q=\lambda L$.
If $\lambda>0$ the direction of E is from the segment, otherwise - toward it.

The answer:
$E=\int_{0}^{L} \frac{k \lambda d x}{(L+z-x)^{2}}=\frac{k L \lambda}{(z+L) z}$.
In case of $z \square L E=\frac{k q}{z^{2}}$, where $q=\lambda L$.
If $\lambda>0$ the direction of E is from the segment, otherwise - toward it.

