Answer on Question \#81101 Physics / Classical Mechanics

Vector A with arrow has a negative x component 2.70 units in length and a positive y component 1.82 units in length.
(a) Determine an expression for \mathbf{A} with arrow in unit-vector notation.
(b) Determine the magnitude and direction of \mathbf{A} with arrow.
(c) What vector \mathbf{B} with arrow when added to vector \mathbf{A} with arrow, gives a resultant vector with no x component and a negative y component 3.88 units in length?

Solution:

(a) $\mathbf{A}=(-2.70,1.82)=-2.70 \hat{\mathbf{i}}+1.82 \hat{\mathbf{j}}$
(b) $|\mathbf{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(-2.70)^{2}+1.82^{2}}=3.26, \tan \theta=\frac{A_{y}}{A_{x}}=\frac{1.82}{-2.70}=-0.674, \quad \theta=146^{\circ}$
(c) $\mathbf{A}+\mathbf{B}=(0,-3.88)=-3.88 \hat{\mathbf{j}}, \quad \mathbf{B}=-3.88 \hat{\mathbf{j}}-(-2.70 \hat{\mathbf{\imath}}+1.82 \hat{\mathbf{\jmath}})=2.70 \hat{\mathbf{1}}-5.70 \hat{\mathbf{j}}$

Answer:

(a) $-2.70 \hat{\mathbf{\imath}}+1.82 \hat{\mathbf{\jmath}}$
(b) $3.26,146^{\circ}$
(c) $2.70 \mathbf{1}-5.70 \hat{\mathbf{\jmath}}$

Answer provided by https://www.AssignmentExpert.com

