Answer on Question \#80975, Physics / Mechanics | Relativity

Question:

A skier is gliding along at $3.9 \mathrm{~m} / \mathrm{s}$ on horizontal, frictionless snow. He suddenly starts down a 10 。 incline. His speed at the bottom is $10 \mathrm{~m} / \mathrm{s}$.

How long does it take him to reach the bottom?

Solution:

The initial skier's velocity along the incline is $v_{1}=v \cos \alpha=3.9 \cdot 0.98=3.8(\mathrm{~m} / \mathrm{s})$, the acceleration in this direction equals to $a=g \cdot \sin \alpha=9.81 \cdot 0.17=1.7\left(\mathrm{~m} / \mathrm{s}^{2}\right)$, therefore the time is $\tau=\frac{v_{B}-v_{1}}{a}=\frac{10-3.8}{1.7}=3.6(\mathrm{~s})$.

The answer:
It takes $\quad \tau=\frac{v_{B}-v_{1}}{a}=\frac{10-3.8}{1.7}=3.6 \mathrm{~s}$.
Answer provided by https://www.AssignmentExpert.com

