Answer on Question \#80115, Physics / Molecular Physics | Thermodynamics

A room in a house has a floor made entirely of concrete which is 200 mm thick. The lower surface of the concrete in contact with the ground has a temperature of $10^{\circ} \mathrm{C}$ and the upper surface, in contact with the living area has a temperature of $15^{\circ} \mathrm{C}$. The floor is square and has sides $10 \mathrm{~m} \times 10 \mathrm{~m}$
a) Calculate the rate at which thermal energy ia conducted through the concrete. Assume the thermal conductivity of concrete is $0.750 \mathrm{~W} / \mathrm{mK}$.
b) The temperature of thr carpet/concrete interface. The rate of conduction for both conductors are the same and the thermal conductivity of the carpet is $0.06 \mathrm{~W} / \mathrm{mk}$.
c) The rate at which thermal energy is conducted through the two layers.

Answer:

a)

$$
\begin{gathered}
\frac{\Delta Q}{\Delta t}=\frac{k A}{l}\left(\theta_{1}-\theta_{2}\right) \\
\frac{\Delta Q}{\Delta t}=\frac{0.75 \times 100}{0.2}(15-10)=1875 \mathrm{~W}=1.875 \mathrm{~kW}
\end{gathered}
$$

b)

$$
\begin{gathered}
\frac{\Delta Q}{\Delta t}=\frac{k_{1} A}{l_{1}}\left(\theta_{1}-\theta_{3}\right) \\
\frac{\Delta Q}{\Delta t}=\frac{0.06 \times 100}{0.015}\left(15-\theta_{3}\right)=400\left(15-\theta_{3}\right) \\
\frac{\Delta Q}{\Delta t}=\frac{k_{2} A}{l_{2}}\left(\theta_{3}-\theta_{2}\right) \\
\frac{\Delta Q}{\Delta t}=\frac{0.75 \times 100}{0.2}\left(\theta_{3}-10\right)=375\left(\theta_{3}-10\right) \\
400\left(15-\theta_{3}\right)=375\left(\theta_{3}-10\right) \\
\theta_{3}=12.58^{\circ} \mathrm{C}
\end{gathered}
$$

c)

$$
\frac{\Delta Q}{\Delta t}=400(15-12.58)=968 \mathrm{~W}=0.968 \mathrm{kw}
$$

Answer: a) 1.875 kW ; b) $12.58{ }^{\circ} \mathrm{C}$; c) 0.968 kw
Answer provided by https://www.AssignmentExpert.com

