Answer on Question \#79954-Physics - Electric Circuits

A battery of two cells in series each of emf of 1.5 v and internal resistance of 1 ohms is connected to a 5 ohms resistor in series with a parallel combination of two 2 resistance.a,draw the circuit diagram for this set up.b,calculate the effective external resistance ?ii,calculate the current in the circuit ?iii,calculate the loss voltage in the battery?

Solution

a) The circuit diagram:

b) 1. If the 5 ohms resistor is connected in series to the parallel combination of two 2 Ohm resistances, the external effective resistance is

$$
R_{e}=R_{4}+R_{5}+R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}=1+1+5+\frac{2 \cdot 2}{2+2}=8 \Omega
$$

2. If the 5 ohms resistor is connected in series to the parallel combination of two 5 Ohm resistances, the external effective resistance is

$$
R_{e}=R_{4}+R_{5}+R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}=1+1+5+\frac{5 \cdot 5}{5+5}=7.5 \Omega
$$

c) 1 . If the 2 Ohm resistors are connected in parallel, the current is:

$$
I=\frac{E+E}{R_{e}}=\frac{1.5+1.5}{8}=0.375 \mathrm{~A}
$$

2. If the 5 Ohm resistors are connected in parallel, the current is:

$$
I=\frac{E+E}{R_{e}}=\frac{1.5+1.5}{7,5}=0.4 \mathrm{~A}
$$

d) Calculate the loss voltage in the battery if the current is 0.375 A :

$$
V=I \cdot\left(R_{4}+R_{5}\right)=0.375(1+1)=0.75 \mathrm{~V}
$$

Or if the current is 0.4 A :

$$
V=I \cdot\left(R_{4}+R_{5}\right)=0.4(1+1)=0.8 \mathrm{~V}
$$

Answer

If the 2 Ohm resistors are connected in parallel:
b) 80 Ohm , c) 0.375 A, d) 0.75 V

If the 5 Ohm resistors are connected in parallel:
b) 7.5 Ohm, c) 0.4 A, d) 0.8 V

Answer provided by https://www.AssignmentExpert.com

